欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 814-819.doi: 10.3724/SP.J.1006.2012.00814

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

连续回交对消除农杆菌介导转化引起水稻体细胞变异的影响

杨宙1,2,陈浩1,唐微3,林拥军1*   

  1. 1 华中农业大学作物遗传改良国家重点实验室/国家植物基因研究中心, 湖北武汉 430070;2 江西省农业科学院水稻研究所, 江西南昌 330200;3 湖北医药学院生物化学系, 湖北十堰 442000
  • 收稿日期:2011-08-29 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 林拥军, E-mail: yongjunlin@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2008ZX08001-001)资助。

Effect of Successive Backcrossing on Eliminating Somaclonal Variation Caused by Agrobacterium-Mediated Transformation in Rice

YANG Zhou1,2,CHEN Hao1,TANG Wei3,LIN Yong-Jun1,*   

  1. 1 National Key Laboratory of Crop Genetic Improvement / National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan
    430070, China; 2 Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; 3 Biochemistry Department, Hubei
    University of Medicine, Shiyan 442000, China
  • Received:2011-08-29 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 林拥军, E-mail: yongjunlin@mail.hzau.edu.cn

摘要: 农杆菌介导的转化引起许多体细胞变异, 影响了转基因植物的农艺性状。因此, 转基因作物的培育需要大量的T0代再生植株。在本研究中, 我们将转基因水稻株系与原始品种连续回交, 然后评价其回交后代的表现, 消除体细胞变异, 恢复转基因亲本的农艺性状。回交的供体亲本是3个转基因水稻株系, 分别带有来自于苏云金芽胞杆菌(Bt)的抗虫基因。与原始品种连续回交至BC3F1代, 每代BCnF1单株再自交两代, 同时对各个世代进行抗虫性选择。通过发芽试验获得转基因纯合的BCnF3株系, 在室内抗性试验中, 所有的BCnF3纯合株系都能杀死100%的幼虫。在田间试验中, 这些株系的单株产量明显高于供体亲本, 大部分农艺性状与原品种没有显著的差异。这些结果说明连续回交能够在很大程度上恢复转基因水稻株系的农艺性状, 从而减少转基因育种过程中所需的工作量。

关键词: 连续回交, 体细胞变异, 农杆菌介导转化, 转基因水稻, 抗虫性, 农艺性状

Abstract: Somaclonal variation caused by Agrobacterium-mediated transformation influences some agronomic traits of transgenic plants. As a result, a large number of T0 regenerated plants are required in the development of transgenic crop. Here, we successively backcrossed transgenic rice (Oryza sativa L.) to progenitor variety and evaluated agronomic performance of progeny, with the objective of eliminating somaclonal variation and recovering agronomic traits of transgenic parent. Three transgenic lines possessing different insect-resistance genes from Bacillus thuringiensis (Bt) were used as donor parents. They were backcrossed successively to the progenitor variety, and the individuals of each BCnF1 generation were then selfed twice, with selection for insect-resistance. BCnF3 homozygous lines, which were selected by a germination assay, caused an insect mortality of 100% in laboratory bioassay. In the field evaluation, these lines showed obviously higher yield than the donor parents and no significant differences from the progenitor variety in most agronomic traits. These results indicate that successive backcrossing can to a large extent recover agronomic traits of transgenic rice and reduce the workload required in transgenic breeding program.

Key words: Successive backcross, Somaclonal variation, Agrobacterium-mediated transformation, Transgenic rice, Insect-resistance, Agronomic trait

[1]Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997, 35: 205–218

[2]Lin Y J, Zhang Q F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23: 540–547

[3]Shu Q Y, Cui H R, Ye G Y, Wu D X, Xia Y W, Gao M W, Altosaar I. Agronomic and morphological characterization of Agrobacterium-transformed Bt rice plants. Euphytica, 2002, 127: 345–352

[4]Dale P J, McPartlan H C. Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor Appl Genet, 1992, 84: 585–591

[5]Wang G J, Castiglione S, Chen Y, Li L, Han Y F, Tian Y C, Gabriel D W, Han Y N, Mang K Q, Sala F. Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Res, 1996, 5: 289–301

[6]Feldmann K A, Marks M D, Christianson M L, Quatrano R S. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science, 1989, 243: 1351-1354

[7]Bregitzer P, Halbert S E, Lemaux P G. Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet, 1998, 96: 421–425

[8]Arencibia A D, Carmona E R, Cornide M T, Castiglione S, O’Relly J, Chinea A, Oramas P, Sala F. Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res, 1999, 8: 349–360

[9]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271–282

[10]Labra M, Savini C, Bracale M, Pelucchi N, Colombo L, Bardini M, Sala F. Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep, 2001, 20: 325–330

[11]Larkin P J, Scowcroft W R. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet, 1981, 60: 197–214

[12]Bertin P, Bouharmont J. Use of somaclonal variation and in vitro selection for chilling tolerance improvement in rice. Euphytica, 1997, 96: 135–142

[13]Van Sint Jan V, de Macedo C C, Kinet J M, Bouharmont J. Selection of Al-resistant plants from a sensitive rice cultivar, using somaclonal variation, in vitro and hydroponic cultures. Euphytica, 1997, 97: 303–310

[14]Sundaram R M, Vishnupriya M R, Biradar S K, Laha G S, Reddy G N, Rani N S, Sarma N P, Sonti R V. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica, 2008, 160: 411–422

[15]Sundaram R M, Vishnupriya M R, Laha G S, Rani N S, Rao P S, Balachandran S M, Reddy G N, Sarma N P, Sonti R V. Introduction of bacterial blight resistance into Triguna, a high yielding, mid-early duration rice variety. Biotechnol J, 2009, 4: 400–407

[16]Ragagnin V A, de Souza T L P O, Sanglard D A, Arruda K M A, Costa M R, Alzate-Marin A L, Carneiro J E, Moreira M A, de Barros E G. Development and agronomic performance of common bean lines simultaneously resistant to anthracnose, angular leaf spot and rust. Plant Breed, 2009, 128: 156–163

[17]Micallef M C, Austin S, Bingham E T. Improvement of transgenic alfalfa by backcrossing. In Vitro Cell Dev Biol Plant, 1995, 31: 187–192

[18]Bregitzer P, Dahleen L S, Neate S, Schwarz P, Manoharan M. A single backcross effectively eliminates agronomic and quality alterations caused by somaclonal variation in transgenic barley. Crop Sci, 2008, 48: 471–479

[19]Chen H, Tang W, Xu C G, Li X H, Lin Y J, Zhang Q F. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet, 2005, 111: 1330–1337

[20]Tang W, Chen H, Xu C G, Li X H, Lin Y J, Zhang Q F. Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Mol Breed, 2006, 18: 1–10

[21]Chen H, Zhang G A, Zhang Q F, Lin Y J. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae). J Econ Entomol, 2008, 101: 182–189

[22]Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473–497

[23]Thompson C J, Movva N R, Tizard R, Crameri R, Davies J E, Lauwereys M, Botterman J. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J, 1987, 6: 2519–2523

[24]Kaeppler S M, Kaeppler H F, Rhee Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol, 2000, 43: 179–188

[25]Bergelson J, Purrington C B, Palm C J, López-Gutiérrez J C. Costs of resistance: a test using transgenic Arabidopsis thaliana. Proc Biol Sci, 1996, 263: 1659–1663

[26]Saxena D, Stotzky G. Bt corn has a higher lignin content than non-Bt corn. Am J Bot, 2001, 88: 1704–1706

[27]Zhang M(张敏), Wang X-C(王校常), Yan W-D(严蔚东), Liang Y-C(梁永超), Shi W-M(施卫明). K+ and Na+ uptake and transport and SOD activity in Bt transgenic cotton seedlings under salt stress. Acta Pedol Sin (土壤学报), 2005, 42(3): 460–467 (in Chinese with English abstract)

[28]Bates S L, Zhao J Z, Roush R T, Shelton A M. Insect resistance management in GM crops: past, present and future. Nat Biotechnol, 2005, 23: 57–62

[29]Ye R J, Huang H Q, Yang Z, Chen T Y, Liu L, Li X H, Chen H, Lin Y J. Development of insect-resistant transgenic rice with Cry1C*-free endosperm. Pest Manag Sci, 2009, 65: 1015–1020

[30]Peng J Y, Kononowicz H, Hodges T K. Transgenic indica rice plants. Theor Appl Genet, 1992, 83: 855–863
[1] 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833.
[2] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[3] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[4] 马硕, 焦悦, 杨江涛, 王旭静, 王志兴. 基因组测序技术解析耐除草剂转基因水稻G2-7的分子特征[J]. 作物学报, 2020, 46(11): 1703-1710.
[5] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[6] 董玉凤 王旭静 宋亚亚 靳 茜 王志兴. 利用基因拆分技术培育耐草甘膦转基因水稻的研究 [J]. 作物学报, 2019, 45(3): 344-353.
[7] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[8] 孙现军,姜奇彦,胡正,张惠媛,徐长兵,邸一桓,韩龙植,张辉. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报, 2019, 45(11): 1656-1663.
[9] 翟俊鹏,李海霞,毕惠惠,周思远,罗肖艳,陈树林,程西永,许海霞. 普通小麦主要农艺性状的全基因组关联分析[J]. 作物学报, 2019, 45(10): 1488-1502.
[10] 徐益,张列梅,祁建民,苏梅,方书生,张力岚,方平平,张立武. 黄麻纤维产量与主要农艺性状的相关分析[J]. 作物学报, 2018, 44(6): 859-866.
[11] 江红,孙石,宋雯雯,吴存祥,武婷婷,胡水秀,韩天富. 不同地理来源MGIII组大豆品种生育期结构分析及E基因型鉴定[J]. 作物学报, 2018, 44(10): 1448-1458.
[12] 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异[J]. 作物学报, 2018, 44(05): 657-671.
[13] 杨静,邢国杰,牛陆,贺红利,杜茜,郭东全,袁英*,杨向东*. 反义RNA介导GmFAD2-1B基因沉默增强大豆种子中油酸的高效累积[J]. 作物学报, 2017, 43(11): 1588-1595.
[14] 郑立飞,尚一斐,李学军,冯浩,魏永胜. 结构方程模型在冬小麦农艺性状与产量关系分析中的应用[J]. 作物学报, 2017, 43(09): 1395-1400.
[15] 段绍光,金黎平*,李广存,卞春松,徐建飞,胡军,屈冬玉. 马铃薯品种遗传多样性分析[J]. 作物学报, 2017, 43(05): 718-729.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!