欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 808-813.doi: 10.3724/SP.J.1006.2012.00808

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

疣粒野生稻泛素结合酶基因的全长cDNA序列克隆与分析

蒋春苗1,2,黄兴奇1,付坚1,余腾琼1,钟巧芳1,李定琴1,殷富有1,张敦宇1,王玲仙1,程在全1,*   

  1. 1 云南省农业科学院生物技术与种质资源研究所, 云南昆明650223;2 云南大学生命科学学院, 云南昆明650091
  • 收稿日期:2011-10-19 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 程在全, E-mail: czquan-99@163.com, Tel: 13888556318, 0871-5140200
  • 基金资助:

    本研究由国家自然科学基金项目(31160067, 31000746),国家公益性行业科研专项(201003021),云南省重点应用基础研究项目(2008C004)和云南省自然科学基金项目(2010CD098)资助

Cloning and Analysis on Full-length cDNA Sequence of Ubiquitin-conjugating Enzyme Gene from Oryza meyeriana Baill.

JIANG Chun-Miao1,2,HUANG Xing-Qi1,FU Jian1,YU Teng-Qiong1,ZHONG Qiao-Fang1,LI Ding-Qin1,YIN Fu-You1,ZHANG Dun-Yu1,WANG Ling-Xian1,CHENG Zai-Quan1,*   

  1. 1 Biotechnology & Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China; 2 College of Life Science, Yunnan University, Kunming 650091, China
  • Received:2011-10-19 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 程在全, E-mail: czquan-99@163.com, Tel: 13888556318, 0871-5140200

摘要: 从已构建疣粒野生稻消减cDNA文库中随机挑取阳性单克隆经测序得到ESTs, 通过生物信息学分析, 选取与泛素结合酶具有同源功能的EST以RACE技术分离克隆到1个疣粒野生稻泛素结合酶基因的全长cDNA序列, 命名为OmE2 (Oryza meyerianaBaill. ubiquitin-conjugating enzyme, OmE2), 该序列长917 bp, 最大开放阅读框为528 bp, 编码的蛋白具有175个氨基酸, 该蛋白的分子量为19.31 kD, 理论等电点为9.32。OmE2蛋白与其他物种的泛素结合酶具有高度的一致性和相似性, 含有泛素结合酶活性位点的保守序列及半胱氨酸残基, 且具有3个跨膜结构域, 推测OmE2是一类泛素结合蛋白兼跨膜蛋白。经RT-PCR分析, OmE2基因是受白叶枯病病原菌胁迫诱导表达的, 是首次从野生稻中发现的可能参与疣粒野生稻胁迫信号传导和抗病应答反应的基因。

关键词: 疣粒野生稻, 泛素结合酶, 序列分析

Abstract: Based on the bioinformatic analysis of the ESTs from the subtraction cDNA library of Oryza meyeriana, we cloned one of the ESTs which has the homolog function of ubiquitin-conjugating enzyme and got a full-length cDNA sequence of ubiquitin-conjugating enzyme gene by RACE, and named it OmE2 (Oryza meyerianaBaill ubiquitin-conjugating enzyme, OmE2). This full-length cDNA sequence has 917 bp including 528 bp open reading frame encoding a protein of 175 amino acids, with a predicted molecular mass of 19.3 kD and pI of 9.32. OmE2 protein which had significant amino sequence identity and similarity with ubiquitin-conjugating enzyme from other species contained the conserved sequence and cysteine residue in active sites of ubiquitin-conjugating family. OmE2 had three trans-membrane domains. It is predicted that OmE2 protein is a kind of ubiquitin-conjugating protein and transmembrane protein. The expression of OmE2 inOryza meyeriana was induced by Xanthomonas campestris pv. oryzae. Therefore OmE2 gene which was first found in wild rice may participate in the signal transduction and the resistance response in Oryza meyeriana.

Key words: Oryza meyeriana Baill., Ubiquitin-conjugating enzyme, Sequence analysis

[1]Dong F-C(董发才), Song C-P(宋纯鹏). The ubiquitin and physiological functions of plant cell. Plant Physiol Commun (植物生理学通讯), 1999, 35(1): 54–59 (in Chinese)

[2]Ingvardsen C, Veierskov B. Ubiquitin and proteasome-dependent proteolysis in plant. Physiol Plant, 2001, 112: 451–459

[3]Smalle J, Viertra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 16: 3181–3195

[4]Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. Ann Bot, 2007, 99: 787–822

[5]Wang J-L(王金利), Shi S-Q(史胜青), Jia L-Q(贾利强), Jiang Z-P(江泽平). Progress on functions of ubiquitin-conjugating enzyme (E2) in plants. Biotechnol Bull (生物技术通报), 2010, (4): 7–9 (in Chinese with English abstract)

[6]Pickart C M. Mechanisms underlying ubiquitination. Annu Revbiochem, 2001, 70: 503–533

[7]Lau O S, Deng X W. Effect of Arabidopsis COP10 ubiquitin E2 enhancement activity across E2 families and functional conservation among its canonical homologs. Biochem J, 2009, 418: 683–690

[8]Lin W Y, Lin S I, Chiou T I. Molecular regulators of phosphate homeostasis in plants. J Exp Bot, 2009, 60: 1427–1438

[9]Feussner K, Feussner I, Leopold I. Isolation of a cDNA coding for an uniquitin-conjugating enzyme UBC1 of tomato—the first stress-induced UBC of higher plants. FEBS Lett, 1997, 409: 211–215

[10]Xu C-X(徐晨曦), Jiang J(姜静), Liu T-T(刘甜甜), Wang Y-C(王玉成), Liu G-F(刘桂丰), Yang C-P(杨传平). Sequence analysis and function determination of E2s gene from Tamarix androssowii. Northeast For Univ (东北林业大学学报), 2007, 35(11): 1–4 (in Chinese with English abstract)

[11]Lu Y-S(陆月赏), Liu Y-H(刘颖慧), Zhang D-F(张登峰), Shi Y-S(石云素), Song Y-C(宋燕春), Wang T-Y(王天宇), Yang D-G(杨德光), Li Y(黎裕). Identification and expression analysis of ZmERD16: a ubiquitin extension protein gene in maize (Zea mays L.). Acta Agron Sin (作物学报), 2010, 36(7): 1075–1083 (in Chinese with English abstract)

[12]Yi L-F(易乐飞), Liu C-W(刘楚吾), Wang P(王萍), Zhou X-H(周向红). cDNA cloning and characterization of a novel ubiquitin-conjugating enzyme gene from Porphyra yezoensis Ueda. J Fish China (水产学报), 2009, 33(5): 719–725 (in Chinese with English abstract)

[13]Guo Q-F(郭启芳). Cloning and Transformation of Ubiquitin Gene in Winter Wheat and Its Expression. MS Dissertation of Shandong Agricultural University, 2004 (in Chinese with English abstract)

[14]Yan H-J(宴慧君). Construction and Analysis of Oryza meyeriana Suppression Subtractive Hybridization Library under Xanthomonas campestris pv. oryza Stress. MS Dissertation of Yunnan University, 2007 (in Chinese with English abstract)

[15]Xu L, Menard R, Berr A. The E2 ubiquitin-conjugation enzymes, AtUBC1 and AtUBC2, play redundant role and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J, 2009, 57: 279–288

[16]Song J-H(宋江华), Zhang L-X(张立新). Progress on the transmembrane protein in plants. J Biol (生物学杂志), 2009, 26(6): 62–64 (in Chinese with English abstract)

[17]Chen X F, Wang B Y, Wu R. A gibberellin-stimulated ubiquitin-conjugating enzyme gene is involved in ?-amylase gene expression in rice aleurone. Plant Mol Biol, 1995, 29: 787–795
[1] 许玉超,侯喜林,徐玮玮,沈露露,张仕林,刘世拓,胡春梅. 紫色不结球白菜花色苷合酶基因BrcANS的克隆与表达分析[J]. 作物学报, 2016, 42(06): 850-859.
[2] 王晓红, 朱攀攀, 梁燕梅, 韩淑梅, 赵爱春, 王传宏, 鲁成, 余茂德. 桑树多聚半乳糖醛酸酶抑制蛋白基因MaPGIP1的克隆及功能分析[J]. 作物学报, 2015, 41(09): 1361-1371.
[3] 李伟,商海红,王少干,范森淼,李俊文,刘爱英,石玉真,龚举武,巩万奎,王涛,白志川,袁有禄. 三个陆地棉水孔蛋白基因的克隆与表达分析[J]. 作物学报, 2013, 39(02): 222-229.
[4] 李拴柱,万勇善,刘风珍. 花生γ-生育酚甲基转移酶基因(γ-TMT)的克隆及序列分析[J]. 作物学报, 2012, 38(10): 1856-1863.
[5] 耿卫东,李艳军,张新宇,朱华国,孙杰. 棉花S-腺苷甲硫氨酸脱羧酶基因的克隆及低温下的表达分析[J]. 作物学报, 2012, 38(09): 1649-1656.
[6] 东金玉,万勇善,刘风珍. 花生Δ9-硬脂酰-ACP脱氢酶基因(SAD)的序列分析[J]. 作物学报, 2012, 38(07): 1167-1177.
[7] 刘玉汇,王丽,杨宏羽,余斌,李元铭,张俊莲,王蒂. 马铃薯块茎颗粒结合型淀粉合酶基因的克隆及其RNAi载体的构建[J]. 作物学报, 2012, 38(07): 1187-1195.
[8] 杨昆,周永祥,张贺翠,赵永斌,杨永军,陆俊杏,朱利泉,薛丽琰,吕俊,高启国. 甘蓝、大白菜和甘蓝型油菜EXO70A1基因的克隆与表达特性[J]. 作物学报, 2012, 38(04): 578-588.
[9] 李媛媛, 陈庆芳, 傅廷栋, 马朝芝. 利用SSCP技术分析甘蓝型油菜10个功能基因序列差异[J]. 作物学报, 2012, 38(01): 43-49.
[10] 王旺田, 张金文, 王蒂, 张俊莲, 司怀军, 陶士珩. 马铃薯块茎糖基转移酶基因的克隆及其RNAi载体的构建[J]. 作物学报, 2011, 37(11): 1926-1934.
[11] 张庆林, 赵艳, 李晓薇, 翟莹, 张艳, 王英, 李景文, 王庆钰. 大豆硬脂酸-ACP脱饱和酶基因启动子的克隆及其表达活性分析[J]. 作物学报, 2011, 37(07): 1205-1211.
[12] 王明霞,高翔,陈其皎,董剑,赵万春,李艳亮,李敏,陈瑞佶,庞红喜,李哲清. 陕253γ-醇溶蛋白基因的克隆与序列分析[J]. 作物学报, 2010, 36(3): 526-532.
[13] 宋兆建,杜超群,胡亚平,唐志强,陈冬玲,何玉池,何光存,蔡得田. 栽培稻与疣粒野生稻杂种二倍体和四倍体的鉴定及比较[J]. 作物学报, 2010, 36(07): 1144-1152.
[14] 徐爱遐,黄镇,马朝芝,肖恩时,张修森,涂金星,傅廷栋.
芥菜型油菜FAE1基因序列特征及其与芥酸含量关系的初步分析
[J]. 作物学报, 2010, 36(05): 794-800.
[15] 丁勇;陈庆波;徐春雷;常玮;甘莉. 油菜油体钙蛋白基因BnClo1的克隆和表达[J]. 作物学报, 2008, 34(11): 1921-1928.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!