欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1167-1177.doi: 10.3724/SP.J.1006.2012.01167

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生Δ9-硬脂酰-ACP脱氢酶基因(SAD)的序列分析

东金玉,万勇善*,刘风珍*   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室 / 山东省作物生物学重点实验室,山东泰安271018
  • 收稿日期:2011-12-29 修回日期:2012-04-15 出版日期:2012-07-12 网络出版日期:2012-05-11
  • 通讯作者: 万勇善, E-mail: yswan@sdau.edu.cn, Tel: 0538-8241540; 刘风珍, E-mail: liufz@sdau.edu.cn, Tel: 0538-8241540
  • 基金资助:

    本研究由山东省花生良种产业化工程项目和现代农业产业技术体系建设项目(CAIS-14)资助。

Sequence Analysis of Δ9-Stearoyl-ACP Desaturase Gene (SAD) in Peanut

DONG Jin-Yu,WAN Yong-Shan*,LIU Feng-Zhen*   

  1. State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an 271018, China
  • Received:2011-12-29 Revised:2012-04-15 Published:2012-07-12 Published online:2012-05-11
  • Contact: 万勇善, E-mail: yswan@sdau.edu.cn, Tel: 0538-8241540; 刘风珍, E-mail: liufz@sdau.edu.cn, Tel: 0538-8241540

摘要: 利用同源克隆技术获得花生区组二倍体野生种A. duranensisA. ipaensis Δ9-硬脂酰-ACP脱氢酶基因SAD (命名为gSAD-AgSAD-B)及3个栽培品种的SAD,每个栽培品种有2个SAD (命名为gSAD-1gSAD-2)。同时获得丰花2号SAD的两条全长cDNA (命名为FhrSAD-1FhrSAD-2)。丰花2号的FhgSAD-1FhgSAD-2均含有2个内含子,二者同源性97.5%,共有69个变异位点,其中62个是SNP位点、6个特异性酶切位点。FhrSAD-1FhrSAD-2间核苷酸序列同源性98.6%,其中编码区序列同源性98.9%,共有12个变异位点,编码的Ah-SAD2氨基酸序列与Ah-SAD1相比在N端的17PSSSSSSSSSSFSL30丝氨酸聚集区少一个丝氨酸。gSAD-1gSAD-A同源性为99.9%,存在4个SNP位点; gSAD-2gSAD-B同源性为100%。推测gSAD-1gSAD-2分别来自花生栽培品种的A、B2个染色体组。研究明确了花生不同染色体组SAD的序列特征,为进一步探讨SAD的表达及其在控制花生籽仁脂肪酸组分中的作用提供了重要的参考。

关键词: 花生, 硬脂酰-ACP脱饱和酶(SAD), 序列分析

Abstract: The peanut (Arachis hypogaea L.) cultivars are an allotetraploid consisting of A and B genomes. Δ9-Stearoyl-ACP desaturase (SAD) is a key enzyme that catalyzes the conversion of stearoyl-ACP to oleoyl-ACP, and finally controls the content of oleic acid as well as the proportion of saturated to unsaturated fatty acids. By using the primers based on the peanut cDNA sequence of SAD (AF172728), genomic DNAs were amplified from the wild diploid species A. duranensis and A. ipaensis, and from the cultivated accessions of peanut Fenghua 2, Shanhua 7 and Puyangdatuoyang, respectively. Two isoforms of the genomic SAD were identified and named as FhgSAD-1 and FhgSAD-2 from the cultivated peanut accessions. In addition, two isoforms of SAD cDNA were isolated and named as FhrSAD-1 and FhrSAD-2 from Fenghua 2. Comparison of the genomic sequences with cDNAs revealed that there were two introns in the SAD genomic sequences. Sequences alignment showed that the similarity between FhgSAD-1 and FhgSAD-2 in nucleotide level was over 97.5%, with 69 different sites in total, including 62 SNP sites and six variation sites of endonuclease recognition. The cDNA sequence similarity between FhrSAD-1 and FhrSAD-2 was 98.6%, with 98.9% nucleotides identity in coding region. Deduced amino acid sequences revealed that only one difference occurred in serine gathering area of 17PSSSSSSSSSSFSL30. gSAD-1 shared 99.9% nucleotide sequence homology with gSAD-A, while gSAD-2 was the same as gSAD-B. According to the phylogenetic tree, it is assumed that gSAD-1 and gSAD-2 may come from the A and B genome, respectively. The results revealed the characteristics of SAD sequences from different genomes of peanut, and provided important basis for exploring gene expression regulation and fatty acid component improvement in peanut seeds.

Key words: Peanut, Stearoyl-ACP desaturase (SAD), Sequence analysis

[1]Wan S-B(万书波). Peanut Quality (花生品质学). Beijing: China Agricultural Science and Technology Press, 2005. pp 2–10 (in Chinese)

[2]Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of ahFAD2B control the the high oleic acid trait in cultivated peanut. Crop Sci, 2009, 49: 2029–2036

[3]Yukawa Y, Takaiwa F, Shojik K, Masuda K, Yamada K. Structure and expression of two seed-specific cDNA encoding stearoyl-acyl carrier protein desaturase from sesame, Sesamum indicum. Plant Cell Physiol, 1996, 37: 201–205

[4]Li X-D(李晓丹), Cao Y-L(曹应龙), Hu Y(胡亚), Xiao L(肖玲), Wu Y-H(武玉花), Wu G(吴刚), Lu C-M(卢长明). Fatty acid accumulation pattern in developing seeds of peanut. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(2): 157–162 (in Chinese with English abstract)

[5]Wendy C, Paolo L, Nunzia S, Monica D P, Paola S, Virginia C, Noreen M C, Alan M M, Peter M, Tony A K, Philip J D, Stefania G, Teodoro C. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res, 2008, 17: 769–782

[6]Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol, 2007, 63: 257–271

[7]Byfield G E, Xue H, Upchurch R G. Two genes from soybean encoding soluble Δ9-stearoyl-ACP desaturase. Crop Sci, 2006, 46: 840–846

[8]Ping Z, Joseph W B, Robert G U, Edward W, John S, Ralph E D. Mutations in a Δ9-Stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds. Crop Sci, 2008, 48: 2305–2313

[9]Aardra K, John S, Edward W, Ludmila L, David H, Pradeep K. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol, 2007, 63: 257–271

[10]Luo T, Deng W Y, Zeng J, Zhang F I. Cloning and characterization of a stearoyl-Acyl carrier protein desaturase gene from Cinnamomum longepaniculatum. Plant Mol Biol Rep, 2009, 27: 13–19

[11]Florin S, Yael B, Arnon B, Ilan H, Ran H. Identification and molecular characterization of homeologous Δ9-Stearoyl-acyl carrier protein desaturase3 genes from the allotetraploid peanut (Arachis hypogaea). Plant Mol Biol Rep, 2010, 29: 232–241

[12]Whittle E, Cahoon E B, Subrahmanyam S, Shanklin J. A multifunctional acyl-acyl carrier protein desaturase from Hedera helix L. (English ivy) can synthesize 16- and 18-carbon monoene and diene products. J Biol Chem, 2005, 280: 28169–28176

[13]Zaborowska Z, Starzycki M, Femiak I, Swiderski M, Legocki A B. Yellow lupine gene encoding stearoyl-ACP desaturase-organization, expression and potential application. Acta Biochimicn Polonicn, 2002, 49: 29–42

[14]Chen M N, Ren Z K, Chi X Y, Pan L J, Yu S L, Yang Q L. Isolation, characterization and expression analysis of stearoyl-ACP desaturase gene from Kosteletzkya virginica. Bioinform Biomed Engin (iCBBE), 2010, 4: 1–5

[15]Shah F H, Rashid O, San C T. Temporal regulation of two isoforms of cDNA clones encoding delta 9-stearoyl-ACP desaturase from oil palm (Elaies guineensis). Plant Sci, 2000, 152: 27–33

[16]Liu Q, Singh S P, Green A G. High-steric and oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol, 2002, 129: 1–12

[17]Wendy C, Paolo L, Nunzia S, Monica D P, Paola S, Virginia C, Noreen M C, Alan M M, Peter M, Tony A K, Philip J D, Stefania G, Teodoro C. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res, 2008, 17: 769–782

[18]Thompson G A, Scherer D E, Aken S F, Kenny J W, Young H L, Shintani D K, Kridl J C, Knauf V C. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci USA, 1991, 88: 2578–2582

[19]Zhang D-Q(张党权), Tan X-F(谭晓风), Chen H-P(陈鸿鹏), Zeng Y-L(曾艳玲), Jiang Y(蒋瑶), Li W(李魏), Hu F-M(胡芳名). Full-length cDNA cloning and bioinformatic analysis of Camellia oleifera SAD. Sci Silv Sin (林业科学), 2008, 44(2): 155–159 (in Chinese with English abstract)

[20]Dong S-Z(董胜张), Ye G-Y(叶恭银), Liu C-L(刘朝良). Research progress in molecular evolution of yolk proteins in insects. Acta Entomol Sin (昆虫学报), 2008, 51(11): 1 196–1 209 (in Chinese with English abstract)

[21]Sappington T W, Raikhel A S. Molecular characteristics of insect vitellogenin and vitellogenin receptors. Insect Biochem Mol Biol, 1998, 28: 277–300

[22]Lindqvist Y, Huang W, Schneider G, Shanklin J. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other diiron proteins. EMBO J, 1996, 15: 4081–4092

[23]Krapovickas A, Gregory W C. Taxonomia del género Arachis (Leguminosae). Bonplandia, 1994, 8: 1–186

[24]Valls J F M, Simpson C E: New species of Arachis from Brazil, Paraguay, and Bolivia. Bonplandia, 2005, 14: 35–64

[25]Smartt J, Gregory W C, Gregory M P. The genomes of Arachis hypogaea L. cytogenetic studies of putative genome donor. Euphytica, 1978, 27: 665–675

[26]Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F M, Ferreira M E. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol, 2004, 4: 11

[27]Seijo G, Lavia G I, Fernández A, Krapovickas A, Ducasse D A, Bertioli D J, Moscone E A. Genomic relationships between the cultivated peanut (Arachis hypogaea Leguminosae) and its close relatives revealed by double GISH. Am J Bot, 2007, 94: 1963–1971

[28]Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1–11

[29]Fávero A P, Simpson C E, Valls J F M, Vello N A. Study of the evolution of cultivated peanut through crossability studies among Arachis ipaënsis, A. duranensis, and A. hypogaea. Crop Sci, 2006, 46: 1546–1552

[30]Jung S, Tate P L, Horn R, Kochert G, Moore K, Abbott A G. The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered, 2003, 94: 334–340
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[7] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[10] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[13] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[14] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[15] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!