欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1155-1166.doi: 10.3724/SP.J.1006.2012.01155

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

春化、光周期和矮秆基因在不同国家小麦品种中的分布及其效应

杨芳萍1,2,夏先春1,张勇1,张晓科3,刘建军4,唐建卫5,杨学明6,张俊儒2,刘茜7,李式昭8,何中虎1,9,*   

  1. 1中国农业科学院作物科学研究所/国家小麦改良中心, 北京 100081;2甘肃省农业科学院, 甘肃兰州 730070;3西北农林科技大学农学院,陕西杨凌 712100;4山东省农业科学院,山东济南 250100;5周口农业科学院,河南周口 466001;6江苏农业科学院,江苏南京 210014;7河北省农林科学院,河北石家庄 050031;8四川农业科学院,四川成都 610066;9CIMMYT中国办事处, 北京 100081
  • 收稿日期:2011-11-22 修回日期:2012-02-22 出版日期:2012-07-12 网络出版日期:2012-03-29
  • 通讯作者: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2011G-3)和国家自然科学基金项目(31161140346, 30960193)资助。

Distribution of Allelic Variation for Vernalization, Photoperiod, and Dwarfing Genes and Their Effects on Growth Period and Plant Height among Cultivars from Major Wheat Producing Countries

YANG Fang-Ping1,2,XIA Xian-Chun1,ZHANG Yong1,ZHANG Xiao-Ke3,LIU Jian-Jun4,TANG Jian-Wei5,YANG Xue-Ming6,ZHANG Jun-Ru2,LIU Qian7,LI Shi-Zhao8,HE Zhong-Hu1,9,*   

  1. 1Institute of Crop Sciences / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 3 College of Agronomy, Northwest A&F University, Yangling 712100, China; 4 Shandong Academy of Agricultural Sciences, Jinan 250100, China; 5Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, China; 6 Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 7 Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China; 8 Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 9 CIMMYT China Office, Beijing 100081, China?
  • Received:2011-11-22 Revised:2012-02-22 Published:2012-07-12 Published online:2012-03-29
  • Contact: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547

摘要: 为促进国外种质资源在我国的有效利用,将14个国家的100份代表性小麦品种在国内的8个代表性地点种植,调查抽穗期、成熟期和株高,并以4个春化基因(Vrn-A1Vrn-B1Vrn-D1Vrn-B3)、1个光周期基因(Ppd-D1a)及2个矮秆基因(Rht-B1bRht-D1b)的分子标记检测所有品种的基因型。春化基因Vrn-A1aVrn-B1Vrn-D1vrn-A1+vrn-B1+ vrn-D1的分布频率分别为8.0%、21.0%、21.0%和64.0%;显性等位变异Vrn-A1aVrn-B1Vrn-D1主要存在于来自中国春麦区及意大利、印度、加拿大、墨西哥和澳大利亚的品种中,这些品种一般为春性类型;春化位点均为隐性等位变异或vrn-A1+vrn-D1+Vrn-B1的品种主要分布在中国冬麦区、美国冬麦区、俄罗斯冬麦区,以及英国、法国、德国、罗马尼亚、土耳其和匈牙利,这些地区的小麦均为冬性类型。秋播时,供试品种均能正常抽穗,且携带春化显性变异的材料较隐性类型抽穗早,显性等位变异表现加性效应,4个春化位点均为隐性变异的一些欧美材料因抽穗太晚在杨凌和成都不能正常成熟;而春播时,显性等位变异基因型抽穗的频率高,隐性等位变异基因型基本不能抽穗。光周期不敏感基因Ppd-D1a的分布频率为68.0%,主要分布在中国、法国、罗马尼亚、俄罗斯、墨西哥、澳大利亚和印度,而光周期敏感等位变异Ppd-D1b主要分布在英国、德国、匈牙利和加拿大等中高纬度地区;携带Ppd-D1a的品种较携带Ppd-D1b的品种抽穗早,大多数Ppd-D1a品种在长日照和短日照条件下均能成熟,大部分Ppd-D1b品种在短日照条件下不能成熟。Rht-B1bRht-D1b基因的分布频率分别为43.0%和35.0%,其中Rht-B1b主要分布于美国、罗马尼亚、土耳其、意大利、墨西哥和澳大利亚,Rht-D1b主要分布于中国、德国、英国、意大利和印度。一般来说,一个国家的品种携带Rht-B1bRht-D1b之一,而这2个基因在高纬度地区分布频率较低。Rht-B1bRht-D1bPpd-D1a的降秆作用均达显著水平,Rht-B1bRht-D1b的加性效应突出。

关键词: 普通小麦, 春化基因, Ppd-D1a, Rht-B1bRht-D1b, 分子标记

Abstract: To efficiently use exotic resources in Chinese wheat breeding programs, we investigated the heading date, maturity date, and plant height of 100 representative cultivars collected from 14 countries at eight locations in China, and detected the allelic variations of vernalization loci VRN-1 and VRN-B3, photoperiod gene Ppd-D1a,and dwarfing genes Rht-B1b and Rht-D1b by means of molecular markers. The frequencies of vernalization loci were 8.0% for Vrn-A1a, 21.0% for Vrn-B1, 21.0% for Vrn-D1 and 64.0% for vrn-A1+vrn-B1+ vrn-D1, except for the absence of dominant allele Vrn-B3 in all tested materials. Dominant vernalization alleles Vrn-A1a, Vrn-B1, and Vrn-D1 were mainly observed in cultivars from Chinese spring wheat region, Italy, India, Canada, Mexico, and Australia; whereas, cultivars carrying all recessive alleles at the four vernalization loci and vrn-A1+vrn-D1+Vrn-B1+vrn-B3 genotypewere mostly found in cultivars from Chinese winter wheat region, United States (US) winter wheat region, Russia winter wheat region, United Kingdom (UK), France, Germany, Romania, Turkey, and Hungary. All cultivars headed normally when sown in autumn. Cultivars with dominant alleles showed earlier heading date than those with recessive alleles, and genotypes with two or more dominant alleles showed additive effects. Some European and US cultivars with recessive genes at the four vernalization loci could not mature in Yangling and Chengdu. Under spring-sown condition, the cultivars with dominant vernalization alleles showed high heading frequency; in contrast, most cultivars with recessive alleles failed to head. Gene Ppd-D1a was distributed mainly in cultivars from China, France, Romania, Russia, Mexico, Australia, and India with the total frequency of 68%. Most cultivars with Ppd-D1b were from high latitude regions, such as UK, Germany, Hungary, and Canada. The Ppd-D1a genotypes appeared to head earlier than the Ppd-D1b genotypes. Daylight condition had no effect on maturity of most Ppd-D1a genotypes, but short daylight condition resulted in failing mature in most Ppd-D1b genotypes. The frequencies of dwarfing genes Rht-B1b and Rht-D1b were 43.0% and 35.0% in the cultivars tested, respectively. Rht-B1b was mainly observed in cultivars from US, Romania, Turkey, Italy, Mexico, and Australia, while Rht-D1b had high frequency in varieties from China, Germany, UK, Italy, and India. Generally, cultivars from one country contain either Rht-B1b or Rht-D1b, andthe frequencies of Rht-B1b and Rht-D1b were very low in cultivars from high latitude regions. The effect of Rht-B1b, Rht-D1b and Ppd-D1a on reducing plant height was significant, of which Rht-B1b and Rht-D1b exhibited an additive effect.

Key words: Common wheat, Vernalization genes, Ppd-D1a, Rht-B1b and Rht-D1b, Molecular markers

[1]Worland A J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 1996, 89: 49-57

[2]Worland A J, Borner A, Korzun V, Li W M, Petrovic S, Sayers E J. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385-394

[3]Snape J W, Butterworth K, Whitechurch E, Worland A J. Waiting for fine times: genetics of flowering time in wheat. Euphytica, 2001, 119: 185-190

[4]Pugsley A T. A genetic analysis of the spring-winter habit of growth in wheat. Aust J Agric Res, 1971, 22: 21-23

[5]Pugsley A T. Additional genes inhibiting winter habit in wheat. Euphytica, 1972, 21: 547-552

[6]McIntosh R A, Hart G E, Devos K M, Gale M D, Rogers W J. Catalogue of gene symbols for wheat, In: Slinkard A E, ed. In: Proc 9th Intl Wheat Genet Symp. Vol. 5. University of Saskatchewan, Saskatoon, SK, Canada: Univ. Extension Press, 1998. pp 1-235

[7]Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581-19586

[8]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268

[9]Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet, 2004, 109: 1677-1686

[10]Chen Y H, Brett F, Carver, Wang S W, Cao S H, Yan L L. Genetic regulation of developmental phases in winter wheat. Mol Breed, 2010, 26: 573-582

[11]Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfeld A, Akashi Y, Kato K, Dubcovsky J. Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet, 2010, 120: 543-552

[12]Welsh J R, Keim D L, Pirasteh B, Richards R D. Genetic control of photoperiod response in wheat. In: Proc 4th Intl Wheat Genet Symp. University of Missouri, Columbia, 1973. pp 897-884

[13]Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115: 721-733

[14]Law C N, Sutka J, Worland A J. A genetic study of day-length response in wheat. Heredity, 1978, 41: 185-191

[15]Eagles H A, Cane K, Kuchel H, Hollamby G J, Vallance N, Eastwood R F, Gororo N N, Martin P J. Photoperiod and vernalization gene effects in southern Australian wheat. Crop Pasture Sci, 2010, 61: 721-730

[16]Tanio M, Kato K. Development of near-isogenic lines for photoperiod-insensitive genes, Ppd-B1 and Ppd-D1, carried by the Japanese wheat cultivars and their effect on apical development. Breed Sci, 2007, 57: 65-72

[17]Zhang X K, Xia X C, Xiao Y G, Zhang Y, He Z H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese common wheat cultivars and their association with growth habit. Crop Sci, 2008, 48: 458-470

[18]Jiang Y(姜莹), Huang L-Z (黄林周), Hu Y-G (胡银岗). Distribution of vernalization genes in Chinese wheat landraces and their relationship with winter hardness. Sci Agric Sin (中国农业科学), 2010, 43(13): 2619-2632 (in Chinese with English abstract)

[19]Iqbal M, Shahzad A, Ahmed I. Allelic variation at the Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3 and Ppd-D1a loci of Pakistani spring wheat cultivars. Electron J Biotechnol, 2011,14(1): doi: 10.2225/vol14-issue1-fulltext-6

[20]Yang F P, Zhang X K, Xia X C, Laurie D A, Yang W X, He Z H. Distribution of photoperiod insensitive gene Ppd-D1a (Ppd1) in Chinese common wheat. Euphytica, 2009, 165: 445-452

[21]Ellis M H, Spielmeyer W, Rebetzke G J, Richards R A. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042

[22]Yang S-J(杨松杰), Zhang X-K(张晓科), He Z-H(何中虎), Xia X-C(夏先春), Zhou Y(周阳). Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker. Sci Agric Sin (中国农业科学), 2006, 39(8): 1680-1688 (in Chinese with English abstract)

[23]Zhang X K, Yang S J, Zhou Y, He Z H, Xia X C. Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica, 2006, 152: 109-116

[24]Yang F-P(杨芳萍), Han L-M(韩利明), Xia X-C(夏先春), Qu Y-Y(曲延英), Wang Z-W(王忠伟), He Z-H(何中虎). Distribution of allelic variation for genes of vernalization and photoperiod among wheat cultivars from 23 countries. Acta Agron Sin (作物学报), 2011, 37(11): 1-10 (in Chinese with English abstract)

[25]Han L-M(韩利明), Yang F-P(杨芳萍), Xia X-C(夏先春), Yan J(阎俊), Zhang Y(张勇), Qu Y-Y(曲延英), Wang Z-W(王忠伟), He Z-H(何中虎). Distribution of genes related to plant height, kernel weight and disease resistance among wheat cultivars from major countries. J Triticease Crops (麦类作物学报), 2011, 31(5): 1-8 (in Chinese with English abstract)

[26]Liang D(梁丹), Yang F-P(杨芳萍), He Z-H(何中虎), Yao D-N(姚大年), Xia X-C(夏先春). Characterization of Lr34/Yr18, Rht-B1b, Rht-D1b genes in CIMMYT wheat cultivars and advanced lines using STS markers. Sci Agric Sin (中国农业科学), 2009, 42(1): 17-27 (in Chinese with English abstract)

[27]Lagudah E S, Appels R, McNeil D. The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome, 1991, 34: 387-395

[28]Iqbal M, Navabi A, Yang R C, Salmon D F, Spaner D. Molecular characterization of vernalization response genes in Canadian spring wheat. Genome, 2007, 50: 511-516

[29]Iqbal M, Navabi A, Salmon D F, Yang R C, Murdoch B M, Moore S S, Spaner D. Genetic analysis of flowering and maturity time in high latitude spring wheat. Euphytica, 2007, 154: 207-218

[30]Iwaki K, Haruna S, Niwa T, Kato K. Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. Plant Breed, 2001, 120: 107-114

[31]Van Beem J , Mohler V, Lukman R, Van Ginkel M, William M, Crossa J, Worland Anthony J. Analysis of genetic factors influencing the developmental rate of globally important CIMMYT wheat cultivars. Crop Sci, 2005, 45: 2113-2119

[32]Prasil I T, Prasilova P, Pankovak K. The relationship between vernalization requirement and frost tolerance in substitution lines of wheat. Biol Plant, 2005, 49: 195-200

[33]Stelmakh A F. Genetic effects of Vrn genes on heading date and agronomic traits in bread wheat. Euphytica, 1993, 65: 53-60

[34]Stelmakh A F. Genetic systems regulating flowering response in wheat. Euphytica, 1998, 100: 359-369

[35]Worland A J, Petrovic S, Law C N. Genetic analysis of chromosome 2D of wheat: II. The importance of the chromosome to Yugoslavian varieties. Plant Breed, 1988, 100: 247-259

[36]Halse N J, Weir R N. Effects of vernalization, photoperiod, and temperature on physiological development and spikelet number of Australian wheat. Aust J Agric Res, 1970, 21: 383-393

[37]Flood R G, Halloran G M. The influence of genes for vernalization response on development and growth in wheat. Ann Bot, 1986, 58: 505-513

[38]Allan R E. Agronomic comparisons between Rht1 and Rht2 semi-dwarf genes in winter wheat. Crop Sci, 1989, 29: 1103-1108

[39]Sip V, Chrpova J, Zofajova A, Pankova K, Uzik M, Snape J W,. Effects of specific Rht and Ppd alleles on agronomic traits in winter wheat cultivars grown in middle Europe. Euphytica, 2010, 172: 221-233

[40]Addisu M, Snape J W, Simmonds J R, Gooding M J. Reduced height (Rht) and photoperiod insensitivity (Ppd) allele associations with establishment and early growth of wheat in contrasting production systems. Euphytica, 2010, 172: 169-181

[41]Worland A J, Korzun V, Röder M S, Ganal M W, Law C N. Genetic analysis of the dwarfing gene Rht8 in wheat: II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet, 1998, 96: 1110-1120

[42]Knopf C, Becker H, Ebmeyer E, Korzun V. Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cereal Res Commun, 2008, 36: 553-560

[43]Tang N, Jiang Y, He B R, Hu Y G. The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Agric Sci China, 2009, 8: 1028-1038
[1] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[4] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[5] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[6] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[7] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[8] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[9] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[10] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[11] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[12] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[13] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[14] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[15] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!