作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1148-1154.doi: 10.3724/SP.J.1006.2012.01148
王春萍1,2,**,高丽鹃1,2,**,潘志芬1,*,尼玛扎西3,唐亚伟3,曾兴权3,李俏1,2,邓光兵1,2,龙海1,余懋群1,*
WANG Chun-Ping1,2,**,GAO Li-Juan1,2,**,PAN Zhi-Fen1,*,NIMA Zha-Xi3,TANG Ya-Wei3,ZENG Xing-Quan3,LI Qiao1,2,DENG Guang-Bing1,2,LONG Hai1,YU Mao-Qun1,*
摘要: 利用1D-SDS-PAGE分离了261份青藏高原农家青稞的淀粉颗粒结合蛋白,旨在为青藏高原青稞淀粉品质改良和淀粉颗粒结合蛋白机制研究提供依据和基础信息。在分子量45~100 kD区域共有20种多态性蛋白条带和78种组合带型,其中2、3、5、10、11为新条带。利用PCR技术克隆了236份农家青稞GBSSI基因5′前导序列,出现1 000 bp和800 bp的多态性片段,且以前者为主,其频率为80.1%。在8份农家青稞及4份引进的低直链淀粉材料的GBSSI基因5′前导序列中共检测到32个多态性位点,包括9个InDel和23个SNP。GBSSI基因5′前导序列中出现了特有的序列差异,如未出现600 bp类型(约400 bp的特异缺失),而该缺失被认为是低直连淀粉大麦形成的原因;材料yf127、yf70、011Z1396和09Z586出现了特异点突变。因此认为,青藏高原农家青稞品种的淀粉颗粒结合蛋白具有丰富的多态性和独特性,可能存在新的形成机制。
[1]Paul M B. Starch granule-associated proteins and polypeptides: a review. Starch, 2001, 53: 475–503[2]Wang C P, Pan Z F, Nima Z X, Tang Y W, Cai P, Liang J J, Deng G B, Long H, Yu M Q. Starch granule-associated proteins of hull-less barley (Hordeum vulgare L.) from the Qinghai-Tibet Plateau in China. J Sci Food Agric, 2011, 91: 616–624[3]Pan Z-F(潘志芬), Zou Y-X(邹奕星), Zhao T(赵桃), Deng G-B(邓光兵), Zhai Z-G(翟旭光), Wu F(吴芳), Yu M-Q(余懋群). SGP polymorphism in cultivated naked barley from Qinghai-Tibet Plateau in China and the relationship between SGPs and starch content. Hereditas (遗传), 2007, 29(5): 599–606 (in Chinese with English abstract)[4]Ge H F, Wang Z Y, Hong M M. A 31 bp fragment within the 5′upstream region of rice waxy gene enhances gene expression. Acta Phytophysiol Sin, 2000, 26: 159–163[5]Van de Wal M H B J, Jacobsen E, Visser R G F. Multiple allelism as a control mechanism in metabolic pathways: GBSSI allelic composition affects the activity of granule-bound starch synthase I and starch composition in potato. Mol Genet Genomics, 2001, 265: 1011–1021[6]Zhu C-M(朱彩梅), Zhang J(张京). Single nucleotide polymorphism of Wx gene associated with amylose content in barley germplasm. Sci Agric Sin (中国农业科学), 2010, 43(5): 889–898 (in Chinese with English abstract)[7]Wu K-L(吴昆仑), Zhao Y(赵媛), Chi D-Z(迟德钊). Relationship between polymorphism of Wx gene and amylose content in hull-less barley. Acta Agron Sin (作物学报), 2012, 38(1): 71–79 (in Chinese with English abstract)[8]Domon E, Fuijita M, Ishikawa N. The insertion/deletion polymorphisms in the waxy gene of barley genetic resources from East Asia. Theor Appl Genet, 2002, 104: 132–138[9]Patron N J, Smith A M, Fahy B F, Hylton C M, Naldrett M J, Rossnagel M J, and Denyer K. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in 5,-non-coding region. Plant Physiol, 2002, 130: 190–198[10]Pan Z-F(潘志芬), Deng G-B(邓光兵), Yu M-Q(余懋群). An improved 1D-SDS-PAGE method for identification of wheat waxy protein. Chin J Appl Environ Biol (环境与应用生物学报), 2000, 6(5): 487–489 (in Chinese with English abstract)[11]Wang G-L(王关林), Fang H-J(方宏筠). Theory of Plant Genetic Engineering (植物基因工程原理), 2nd Edn. Beijing: Science Press, 2005 (in Chinese) [12]Peng M, Gao M, Båga M, Hucl P, Chibbar R N. Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm. Plant Physiol, 2000, 124: 265–272[13]Borén M, Larsson H, Falk A, Jansson C. The barley starch granule proteome-internalized granule polypeptides of the mature endosperm. Plant Sci, 2004, 166: 617–626[14]Regina A, Kosar-Hashemi B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp P J, Morell M K, Rahman S. Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-synthetic locus. Planta, 2005, 222: 899–909[15]Alexander R D, Morris P C. A proteomic analysis of 14-3-3 binding proteins from developing barley grains. Proteomics, 2006, 6: 1886–1896[16]Hennen-Bierwagen T A, Lin Q H, Grimaud F, Planchot V, Peter L K, Martha G J, Alan M M. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol, 2009, 149: 1541–1559[17]Miural H, Sugawara A. Effects of the three Wx genes on amylose synthesis in wheat endosperm. Theor Appl Genet, 1996, 93: 1066–1070 |
[1] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[2] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[3] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[4] | 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595. |
[5] | 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627. |
[6] | 伦珠朗杰,李慧慧,郭刚刚,其美旺姆,高丽云,唐亚伟,尼玛扎西,达瓦顿珠,卓嘎. 西藏青稞冬春性鉴定及抽穗期多样性与稳定性分析[J]. 作物学报, 2019, 45(12): 1796-1805. |
[7] | 姚晓华,吴昆仑*. 青稞脂质转运蛋白基因blt4.9的克隆及其对非生物胁迫的响应[J]. 作物学报, 2016, 42(03): 399-406. |
[8] | 孟亚雄,孟祎林,汪军成,司二静,张海娟,任盼荣,马小乐,李葆春, 杨轲,王化俊. 青稞遗传多样性及其农艺性状与SSR标记的关联分析[J]. 作物学报, 2016, 42(02): 180-189. |
[9] | 吴昆仑, 赵媛, 迟德钊. 青稞Wx基因多态性与直链淀粉含量的关系[J]. 作物学报, 2012, 38(01): 71-79. |
[10] | 何涛;贾敬芬. 青稞hblt4.2基因的克隆及功能分析[J]. 作物学报, 2009, 35(2): 295-300. |
[11] | 程明;李志强;姜闯道;石雷;唐宇丹;张金政. 青稞的光合特性及光破坏防御机制[J]. 作物学报, 2008, 34(10): 1805-1811. |
[12] | 赵宇玮;郝建国;步怀宇;王英娟;贾敬芬. 青稞HvBADH1基因的克隆及其转化烟草的初步研究[J]. 作物学报, 2008, 34(07): 1153-1159. |
[13] | 孟凡磊;强小林;佘奎军;唐亚伟;胡银岗. 西藏主要农区青稞品种的遗传多样性分析[J]. 作物学报, 2007, 33(11): 1910-1914. |
[14] | 钱刚;翟旭光;韩兆雪;潘志芬;邓光兵;余懋群. 西藏青稞LEA3蛋白新抗旱基因的克隆与序列分析[J]. 作物学报, 2007, 33(02): 292-296. |
[15] | 傅大雄;阮仁武;戴秀梅;刘咏梅. 西藏昌果古青稞、古小麦、古粟的研究[J]. 作物学报, 2000, 26(04): 392-398. |
|