作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2080-2090.doi: 10.3724/SP.J.1006.2021.01089

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇


黄义文1(), 代旭冉1, 刘宏伟1, 杨丽1, 买春艳2, 于立强3, 于广军3, 张宏军1,*(), 李洪杰1,*(), 周阳1,*()   

  1. 1中国农业科学院作物科学研究所 / 作物分子育种国家工程实验室, 北京 100081
    2新乡县矮败小麦育种技术创新中心, 河南新乡 453731
    3石家庄市农林科学研究院赵县实验基地, 河北赵县 051530
  • 收稿日期:2020-11-20 接受日期:2021-03-19 出版日期:2021-11-12 网络出版日期:2021-04-01
  • 通讯作者: 张宏军,李洪杰,周阳
  • 作者简介:E-mail: 18838916683@163.com
  • 基金资助:

Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat

HUANG Yi-Wen1(), DAI Xu-Ran1, LIU Hong-Wei1, YANG Li1, MAI Chun-Yan2, YU Li-Qiang3, YU Guang-Jun3, ZHANG Hong-Jun1,*(), LI Hong-Jie1,*(), ZHOU Yang1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Laboratory for Crop Molecular Breeding, Beijing 100081, China
    2Center for Technological Innovation of Dwarf-male-sterile Wheat Breeding (Xinxiang), Xinxiang 453731, Henan, China
    3Zhaoxian Experiment Station, Shijiazhuang Academy of Agricultural and Forestry Sciences, Zhaoxian 051530, Hebei, China
  • Received:2020-11-20 Accepted:2021-03-19 Published:2021-11-12 Published online:2021-04-01
  • Contact: ZHANG Hong-Jun,LI Hong-Jie,ZHOU Yang
  • Supported by:
    Science and Technology Project for Modern Seed Industry of Hebei(19226351D);National Key Research and Development Program of China(2017YFD0101000);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences


Ppo-A1Ppo-D1是控制小麦多酚氧化酶(polyphenol oxidase, PPO)活性的关键基因。有报道PPO活性与穗发芽抗性有关, 但Ppo-A1Ppo-D1位点不同等位变异对穗发芽抗性的影响尚不明确。本研究利用248份我国主栽小麦品种3年发芽指数, 结合Ppo-A1Ppo-D1位点等位变异分型结果, 研究两个位点不同等位变异及其等位变异组合与穗发芽抗性的关系。结果表明, 发芽指数主要受年份、Ppo-A1位点和Ppo-A1 × Ppo-D1互作共同影响。在Ppo-A1位点, 携带低PPO活性等位变异Ppo-A1b的小麦品种发芽指数显著低于携带高PPO活性等位变异Ppo-A1a的品种, 平均发芽指数相差5.22%; 相反, 在Ppo-D1位点携带低PPO活性等位变异Ppo-D1a品种的发芽指数高于携带高PPO活性等位变异Ppo-D1b的品种, 但差异不显著。在4种等位变异组合中, Ppo-A1bPpo-D1b组合类型品种的发芽指数最低。上述Ppo-A1位点等位变异与穗发芽抗性的关系在轮选13 × 济麦20 F2及F2:3分离群体中得到验证。PPO活性和Ppo-A1相对表达量均与发芽指数呈显著正相关。本研究表明, Ppo-A1b等位变异的分子标记可以有效地用于穗发芽抗性辅助选择。

关键词: 小麦, 抗穗发芽育种, 多酚氧化酶, Ppo-A1b等位变异, 分子标记辅助选择


Ppo-A1 and Ppo-D1 are the major genes that control the activity of polyphenol oxidase (PPO) in wheat. It has been reported that the activity of polyphenol oxidase affects pre-harvest sprouting (PHS) resistance, but the effect of different alleles/allelic combinations at the Ppo-A1 and Ppo-D1 loci on PHS resistance remains unclear. The current study was carried out to elucidate the effects based on the germination index obtained from 248 Chinese wheat cultivars in a three-year trial in combination with genotypic data at the Ppo-A1 and Ppo-D1 loci. Analysis of variation for the Ppo-A1 and Ppo-D1 loci showed that year, Ppo-A1 locus and Ppo-A1 × Ppo-D1 interaction had significant effects on germination index. At locus Ppo-A1, germination index of cultivars carrying the allele Ppo-A1b of low PPO activity was 5.22% lower than that carrying the allele Ppo-A1a of high PPO activity on average. In contrast, the cultivars carrying the allele Ppo-D1a of low PPO activity had higher germination index than that carrying the allele Ppo-D1b of high PPO activity at locus Ppo-D1, but no significant differences between two alleles. Among the four allelic combinations, the cultivars with the Ppo-A1bPpo-D1b had the lowest germination index. The relationship between the alleles at locus Ppo-A1 and PHS resistance had been verified in the Lunxuan 13 × Jimai 20 F2 and F2:3 segregation populations. There were significantly positive correlations between PPO activity / relative expression level of Ppo-A1 gene and germination index. This study suggests that functional markers of allele Ppo-A1b can be effectively applied in marker-assisted selection for PHS resistance.

Key words: Triticum aestivum, the breeding for resistance to pre-harvest sprouting, polyphenol oxidase, Ppo-A1b allele, molecular marker-assisted selection



Primer sequence (5′-3′)
Amplified fragment (bp)
Annealing temperature (℃)
Ppo-D1 PPO16 F: TGCTGACCGACCTTGACTCC Ppo-D1a 713 60 [26]



Forward primer sequence (5′-3′)
Reverse primer sequence (5′-3′)



变异来源Source of variation 自由度DF 均方Mean square
基因型 Genotypes (G) 247 0.26**
年份 Years (Y) 2 10.91**
基因型 × 年份互作G × Y interaction 494 0.03**
重复 Replications 2 0.04
误差 Error 1486 0.01


小麦品种年份间发芽指数相关分析 **表示在P < 0.01水平下差异显著。"


248份小麦品种和轮选13 × 济麦20群体平均发芽指数、标准差、变幅和变异系数"

Mean ± SD
Coefficient of variation
248份小麦品种 2018 47.46 ± 19.48 5.33-93.71 40.97
248 wheat cultivars 2019 58.39 ± 17.61 17.14-92.19 30.10
2020 34.21 ± 19.05 2.95-88.71 55.59
平均 Mean 46.70 ± 17.03 11.55-88.70 36.41
轮选13 × 济麦20群体 2019 (F2) 59.49 ± 16.59 18.10-90.76 27.88
Lunxuan 13 × Jimai 20 population 2020 (F2:3) 46.94 ± 13.22 19.14-79.53 28.18


亲本轮选13 (A)和济麦20 (B)穗发芽抗性比较(发芽3 d)"


分子标记PPO18、PPO16和PPO29检测部分小麦品种Ppo-A1 (A)和Ppo-D1 (B)位点的不同等位变异 M: DNA ladder 2000; 1: 京411; 2: 洛旱7号; 3: 山农20; 4: 石4185; 5: 石麦12; 6: 新麦20; 7: 开麦20; 8: 许农5号; 9: 淮麦20; 10: 邢麦13。"



Source of variation
Mean square
年份 Years (Y) 2 3.543**
Ppo-A1 1 0.512**
Ppo-D1 1 0.009
Ppo-A1 × Ppo-D1互作Ppo-A1 × Ppo-D1 interaction 1 0.173*
Ppo-A1 × 年份互作 Ppo-A1 × Y interaction 2 0.010
Ppo-D1 × 年份互作 Ppo-D1 × Y interaction 2 0.001
Ppo-A1 × Ppo-D1 × 年份互作 Ppo-A1 × Ppo-D1 × Y interaction 2 0.010
误差 Error 732 0.035


小麦品种Ppo-A1 (A)和Ppo-D1 (B)位点不同等位变异间发芽指数比较 **表示在P < 0.01水平下差异显著。圆点: 极端值。"


小麦品种Ppo-A1和Ppo-D1位点不同等位变异组合间发芽指数比较 不同字母表示等位变异间发芽指数在0.01水平显著。圆点: 极端值。"


轮选13 × 济麦20群体Ppo-A1位点不同等位变异间发芽指数比较 不同字母表示等位变异间发芽指数在0.01水平显著。"


不同基因型品种(A)和轮选13 × 济麦20群体F2:3株系(B) PPO活性比较 不同字母表示基因型间发芽指数或者PPO活性在0.01水平显著。"


不同基因型品种(A和B)和轮选13 × 济麦20群体F2:3株系(C) Ppo-A1和Ppo-D1基因实时定量表达分析 不同字母表示基因型间发芽指数或者基因相对表达水平在0.01水平显著。"

[1] Li H J, Zhou Y, Xin W L, Wei Y Q, Zhang J L, Guo L L. Wheat breeding in northern China: achievements and technical advances. Crop J, 2019, 7: 718-729.
doi: 10.1016/j.cj.2019.09.003
[2] Ali A, Cao J J, Jiang H, Chang C, Zhang H P, Sheikh S W, Shah L, Ma C X. Unraveling molecular and genetic studies of wheat (Triticum aestivum L.) resistance against factors causing pre-harvest sprouting. Agronomy, 2019, 9: 117.
doi: 10.3390/agronomy9030117
[3] Depauw R M, Knox R E, Singh A K, Fox S L, Humphreys D G, Hucl P. Developing standardized methods for breeding pre-harvest sprouting resistant wheat, challenges and successes in Canadian wheat. Euphytica, 2012, 188: 7-14.
doi: 10.1007/s10681-011-0611-y
[4] Liu C X, Ding F, Hao F H, Yu M, Lei H H, Wu X Y, Zhao Z X, Guo H X, Yin J, Wang Y L. Reprogramming of seed metabolism facilitates pre-harvest sprouting resistance of wheat. Sci Rep, 2016, 6: 20593.
doi: 10.1038/srep20593
[5] Zhu Y L, Wang S X, Wei W X, Xie H Y, Liu K, Zhang C, Wu Z Y, Jiang H, Cao J J, Zhao L X. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). Theor Appl Genet, 2019, 132: 2947-2963.
doi: 10.1007/s00122-019-03398-x
[6] Liu Y J, Liu Y X, Zhou Y, Wight C, Pu Z, Qi P F, Jiang Q T, Deng M, Wang Z X, Wei Y M. Conferring resistance to pre-harvest sprouting in durum wheat by a QTL identified in Triticum spelta. Euphytica, 2017, 213: 19.
doi: 10.1007/s10681-016-1796-x
[7] Shao M Q, Bai G H, Rife T W, Jesse P, Lin M, Liu S B, Cai H, Tadele K, Allan F, Harold T. QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby. Theor Appl Genet, 2018, 131: 1683-1697.
doi: 10.1007/s00122-018-3107-5
[8] Vetch J M, Stougaard R N, Martin J M, Giroux M J. Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). Plant Sci, 2019, 281: 180-185.
doi: 10.1016/j.plantsci.2019.01.004
[9] Zhang Y J, Xia X C, He Z H. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theor Appl Genet, 2017, 130: 81-89.
doi: 10.1007/s00122-016-2793-0
[10] Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell, 2011, 23: 3215-3229.
doi: 10.1105/tpc.111.088492
[11] Himi E, Noda K. Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica, 2005, 143: 239-242.
doi: 10.1007/s10681-005-7854-4
[12] Yang G H, Zhao X Q, Li B, Liu J Z, Li Z S. Molecular cloning and characterization of a DFR from developing seeds of blue-grained wheat in anthocyanin biosynthetic pathway. Acta Bot Sin, 2003, 45: 1329-1338.
[13] Bailey P C, Mckibbin R S, Lenton J R, Holdsworth M J, Flintham J E, Gale M D. Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet, 1999, 98: 281-284.
doi: 10.1007/s001220051069
[14] Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J, Matsumoto T, Kawaura K, Ogihara Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Curr Biol, 2016, 26: 782-787.
doi: 10.1016/j.cub.2016.01.063
[15] Lin M, Liu S B, Zhang G R, Bai G H. Effects of TaPHS1 and TaMKK3-A genes on wheat pre-harvest sprouting resistance. Agronomy, 2018, 8: 210.
doi: 10.3390/agronomy8100210
[16] 吴玉良, 杨煜峰. 无原花色素大麦突变体穗发芽的研究. 浙江农业大学学报, 1996, 22: 647-650.
Wu Y L, Yang Y F. Study on pre-harvest sprouting of barley mutants without proanthocyanidins. J Zhejiang Agric Univ, 1996, 22: 647-650 (in Chinese with English abstract).
[17] Weidner S, Krupa U, Amarowicz R, Karamac M, Abe S. Phenolic compounds in embryos of triticale caryopses at different stages of development and maturation in normal environment and after dehydration treatment. Euphytica, 2002, 126: 115-122.
doi: 10.1023/A:1019607302792
[18] 魏海蓉, 高东升, 李宪利. 植物生长调节剂对甜樱桃休眠的调控及花芽酚类物质含量的影响. 园艺学报, 2005, 32: 17-21.
Wei H R, Gao D S, Li X L. Effects of plant growth regulators on the content of phenolics in sweet cherry dormant flower buds and dormancy. Acta Hortic Sin, 2005, 32: 17-21 (in Chinese with English abstract).
[19] 宋亮, 潘开文, 王进闯, 马玉红. 酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响. 生态学报, 2006, 10: 3393-3403.
Song L, Pan K W, Wang J C, Ma Y H. Effects of phenolic acids on seed germination and seedling antioxidant enzyme activity of alfalfa. Acta Ecol Sin, 2006, 10: 3393-3403 (in Chinese with English abstract).
[20] Esmaeili N, Ebrahimzadeh H, Abdi K. Correlation between polyphenol oxidase (PPO) activity and total phenolic contents in Crocus sativus L. Corms during dormancy and sprouting stages. Pharmacogn Mag, 2017, 13: S519-S524.
[21] Demeke T, Morris C F, Campbell K G, King G E, Anderson J A, Chang H G. Wheat polyphenol oxidase: distribution and genetic mapping in three inbred line populations. Crop Sci, 2001, 41: 1750-1757.
doi: 10.2135/cropsci2001.1750
[22] Baik B, Czuchajowska Z, Pomeranz Y. Comparison of polyphenol oxidase activities in wheats and flours from Australian and US cultivars. J Cereal Sci, 1994, 19: 291-296.
doi: 10.1006/jcrs.1994.1036
[23] 王宝凤, 付金锋, 董立峰. 多酚氧化酶活性与小麦抗穗发芽的关系及抗穗发芽新品种秦麦3号的选育. 麦类作物学报, 2006, 29: 97-100.
Wang B F, Fu J F, Dong L F. The Relationship between activity of polyphenol oxidase and resistance to pre-harvest sprouting in wheat and breeding of Qinmai 3 with high resistance to PHS. J Triticeae Crops, 2006, 29: 97-100 (in Chinese with English abstract).
[24] 王宝凤, 杨雪, 付金锋, 董立峰, 马理. 低酚酶活性选择对小麦穗发芽的影响. 核农学报, 2015, 29: 899-907.
Wang F B, Yang X, Fu J F, Dong L F, Ma L. Effects of consecutive selection for low polyphenol oxidase activity on wheat pre-harvest sprouting. J Nucl Agric Sci, 2015, 29: 899-907 (in Chinese with English abstract).
[25] Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed, 2005, 16: 209-218.
doi: 10.1007/s11032-005-6618-0
[26] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58.
pmid: 17426955
[27] 买春艳, 李洪杰, 刘宏伟, 杨丽, 于立强, 周阳, 张宏军. 北方冬麦区小麦品种产量相关性状和幼穗分化特点研究. 麦类作物学报, 2018, 7: 773-781.
Mai C Y, Li H J, Liu H W, Yang L, Yu L Q, Zhou Y, Zhang H J. Characterization of yield related traits and inflorescence differentiation in representative wheat cultivars from the northern China winter wheat region. J Triticeae Crops, 2018, 7: 773-781 (in Chinese with English abstract).
[28] Martinez S A, Godoy J, Huang M, Zhang Z W, Carter A H, Garland Campbell K A, Steber C M. Genome-wide association mapping for tolerance to pre-harvest sprouting and low falling numbers in wheat. Front Plant Sci, 2018, 9: 141.
doi: 10.3389/fpls.2018.00141 pmid: 29491876
[29] Anderson J V, Morris C F. An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Sci, 2001, 41: 1697-1705.
doi: 10.2135/cropsci2001.1697
[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
pmid: 11846609
[31] Jin H, Wen W E, Liu J D, Zhai S N, Zhang Y, Yan J, Liu X Y, Xia X C, He Z H. Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population. Front Plant Sci, 2016, 7: 1032.
[32] 张立平, 葛秀秀, 何中虎, 王德森, 闫俊, 夏先春, Sutherland M W. 普通小麦多酚氧化酶活性的QTL分析. 作物学报, 2005, 31: 7-10.
Zhang L P, Ge X X, He Z H, Wang D S, Yan J, Xia X C, Sutherland M W. Mapping QTLs for polyphenol oxidase activity in a DH population from common wheat. Acta Agron Sin, 2005, 31: 7-10 (in Chinese with English abstract).
[33] Nilthong S, Graybosch R A, Baenziger P S. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds. Theor Appl Genet, 2012, 125: 1705-1715.
doi: 10.1007/s00122-012-1947-y
[34] 张晓, 高德荣, 李曼, 刘大同, 吴素兰, 江伟, 吕国锋. 小麦面粉和鲜面片色泽及Psy-A1Ppo-A1等位变异检测. 麦类作物学报, 2019, 39: 415-422.
Zhang X, Gao D R, Li M, Liu D T, Wu S L, Jiang W, Lyu G F. Color of flour and fresh dough sheet of wheat varieties and detection of allelic variations for genes Psy-A1 and Ppo-A1. J Triticeae Crops, 2019, 39: 415-422 (in Chinese with English abstract).
[35] Kato K, Maruyama-Funatsuki W, Yanaka M, Ban Y, Takata K. Improving preharvest sprouting resistance in durum wheat with bread wheat genes. Breed Sci, 2017, 67: 466-471.
doi: 10.1270/jsbbs.17042
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Full text



No Suggested Reading articles found!