欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2091-2098.doi: 10.3724/SP.J.1006.2021.01083

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用

张福彦1(), 程仲杰1, 陈晓杰1, 王嘉欢1, 陈锋2, 范家霖1, 张建伟1,*(), 杨保安1,*()   

  1. 1河南省科学院同位素研究所有限责任公司 / 河南省核农学重点实验室, 河南郑州 450015
    2河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室, 河南郑州 450002
  • 收稿日期:2020-11-03 接受日期:2021-03-19 出版日期:2021-11-12 网络出版日期:2021-04-14
  • 通讯作者: 张建伟,杨保安
  • 作者简介:E-mail: zhangfuyan704@163.com
  • 基金资助:
    河南省小麦产业技术体系建设专项(Z2010-01-04);河南省重点研发与推广专项(科技攻关)(202102110028);河南省科学院基本科研业务专项(190604015);省部共建小麦玉米作物学国家重点实验室开放课题(30500884)

Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley

ZHANG Fu-Yan1(), CHENG Zhong-Jie1, CHEN Xiao-Jie1, WANG Jia-Huan1, CHEN Feng2, FAN Jia-Lin1, ZHANG Jian-Wei1,*(), YANG Bao-An1,*()   

  1. 1Isotope Institute Co., Ltd, Henan Academy of Sciences / Henan Key Laboratory of Nuclear Agricultural Sciences, Zhengzhou, 450015, Henan, China
    2Agronomy College, Henan Agricultural University / National Key Laboratory of Wheat and Maize Crop Science in Henan Province, Zhengzhou, 450002, Henan, China
  • Received:2020-11-03 Accepted:2021-03-19 Published:2021-11-12 Published online:2021-04-14
  • Contact: ZHANG Jian-Wei,YANG Bao-An
  • Supported by:
    Henan Wheat Research System(Z2010-01-04);Key Research and Development and Promotion Program of Henan Province(202102110028);Basic Scientific Research Project of Henan Academy of Sciences(190604015);National Key Laboratory of Wheat and Maize Crop Science(30500884)

摘要:

采用特异性引物PCR扩增方法对183份黄淮海麦区的小麦品种(系)的粒重基因TaCwi-A1TaGw8-B1TaGS-D1的等位变异进行分子鉴定, 并结合2016—2017和2017—2018年度的千粒重表型数据, 分析不同等位变异类型对小麦粒重的影响, 从而找出优势基因型组合。结果表明, 不同年份间参试品种(系)的千粒重差异达到极显著水平(P<0.01); TaCwi-A1位点上发现TaCwi-A1aTaCwi-A1b两种等位变异, 其分布频率分别为66.7%和33.3%; TaGw8-B1位点上TaGw8-B1a等位变异分布频率较高, 为94.5%, 而TaGw8-B1b等位变异分布频率极低, 仅为5.5%; TaGS-D1位点上发现TaGS-D1aTaGS-D1b两种等位变异, 其分布频率分别为79.8%和20.2%。不同等位变异组合的品种千粒重存在显著差异(P<0.05), 其中具有3个高千粒重等位变异组合TaCwi-A1a/TaGS-D1a/TaGw8-B1a品种的平均千粒重最高, 与具有TaCwi-A1b/TaGS-D1a/TaGw8-B1a品种的平均千粒重差异不显著, 但是显著高于其他组合(P<0.05)。TaCwi-A1a/TaGS-D1a/TaGw8-B1b基因型组合小麦品种(系)的平均千粒重最低。TaCwi-A1TaGw8-B1TaGS-D1位点上的不同等位变异均会导致小麦千粒重的显著变化, 其中TaGw8-B1TaGS-D1位点上的等位变异对小麦粒重的影响更为重要。在参试材料中没有发现具有3个低千粒重等位变异组合TaCwi-A1b/TaGS-D1b/TaGw8-B1b的品种, 在7种不同等位变异组合中, 具有3个高千粒重等位变异组合TaCwi-A1a/TaGS-D1a/TaGw8-B1a品种的平均千粒重最高, 是优势基因型组合。

关键词: 小麦, 粒重基因, 功能标记, 等位变异, 千粒重

Abstract:

Grain weight is one of the most important yield traits in wheat. To accelerate the application process of dominant allelic variation of grain weight gene in wheat breeding, the allelic variation of grain weight gene was identified by using functional markers and the combinations of dominant grain weight genotypes were investigated the allelic variations of grain weight genes TaCwi-A1, TaGw8-B1, and TaGS-D1 in 183 wheat varieties (lines) from the Yellow-Huai-River Valley were identified by PCR amplification with specific primers. To identify the dominant genotype combinations, the effects of different allelic variation genotypes on wheat grain weight were studied by combining the phenotypic data of the 1000-grain weight (TGW) from 2016-2017 and 2017-2018. The results showed that the difference of TGW between different years was highly significant at P < 0.01. Two alleles, TaCwi-A1a and TaCwi-A1b, were detected at TaCwi-A1 locus, with the frequencies of 66.7% and 33.3%, respectively. The frequency of TaGw8-B1a allele on TaGw8-B1 locus was up to 94.5%, while the frequency of TaGw8-B1b allele was only 5.5%. In addition, two alleles, TaGS-D1a and TaGS-D1b, were found in TaGS-D1 locus, and their frequencies were 79.8% and 20.2%, respectively. Further results indicated that there were significant differences in TGW among different allelic variation combinations at P < 0.05. Among them, the average TGW of varieties with TaCwi-A1a/TaGS-D1a/TaGw8-B1a genotype was the highest. There was not significant difference in TGW between TaCwi-A1a/TaGS-D1a/TaGw8-B1a and TaCwi-A1b/ TaGS-D1a/TaGw8-B1a genotype, but it was significantly higher than other genotypes at P < 0.05. The average TGW of TaCwi-A1a/TaGS-D1a/TaGw8-B1b genotype was the lowest. The allelic variations at the loci of TaCwi-A1, TaGw8-B1, and TaGS-D1 all led to significant changes in TGW, and the allelic variations of TaGw8-B1 and TaGS-D1 loci were more important to TGW in wheat. There were no varieties with three low TGW allelic variation combinations TaCwi-A1b/TaGS-D1b/TaGw8-B1b in the tested materials. Among the seven different allele combinations, the average TGW of three high TGW allelic variation combinations TaCwi-A1a/TaGS-D1a/TaGw8-B1a was the highest, which was the dominant genotype combination.

Key words: wheat, grain weight gene, functional marker, allelic variation, TGW

表1

检测目的基因等位变异的功能标记及其扩增信息"

基因
Genes
等位变异
Alleles
标记引物
Mark primer
引物序列
Primer sequences (5′-3′)
退火温度
Annealing
temperature (℃)
扩增片段
Targeted
fragment (bp)
参考文献
Reference
TaGS-D1 TaGS-D1a GS7D-F AACTTAGGGAGCGAAAACAA 58 562 [7]
TaGS-D1b GS7D-R CACCAAGACTGGAGATGAAA 522 [7]
TaCwi-A1 TaCwi-A1a CWI22-F GGTGATGAGTTCATGGTTAAT 56 402 [5]
CWI22-R AGAAGCCCAACATTAAATCAAC
TaCwi-A1b CWI21-F GTGGTGATGAGTTCATGGTTAAG 56 404 [5]
CWI21-R AGAAGCCCAACATTAAATCAAC
TaGw8-B1 TaGW8-B1a TaGW8-7B-F CGCTCATCCATTCCTTCATCG 60 1097 [15]
TaGW8-B1b TaGW8-7B-R GCTATATGGGTTGGTGTCGC 1373 [15]

表2

不同年份中供试材料的千粒重方差分析"

年份
Year
千粒重
Thousand-grain weight (g)
变幅
Range
方差
Variance
标准差
Standard deviation
变异系数
Coefficient of variation (%)
2016-2017 44.11 34.50-53.35 14.00** 3.74 8.48
2017-2018 46.29 34.20-58.45 16.42** 4.05 8.75

图1

标记CWI21 (A)和CWI22 (B)在部分小麦品种中扩增结果 M: DL2000; 1: 石4185; 2: 郑品麦22; 3: 商麦167; 4: 郑育麦16; 5: 豫丰11; 6: 中育1220; 7: 涡麦66; 8: 泛育麦17; 9: 豫农186; 10: 赛德麦1号; 11: 郑麦369; 12: 淮麦19。"

图2

TaGW8-7B标记在部分小麦品种中扩增结果 1: 郑品麦22; 2: 商麦167; 3: 温麦6号; 4: 郑麦518; 5: 豫农202; 6: 中新16; 7: 豫丰11; 8: 皖科06725; 9: 豫麦2号; 10: 冀麦38; 11: 石84-7111; 12: 丰德存麦5号; 13: 良星99; 14: 洛麦28; 15: 淮麦19; 16: 百农3217; M: DL2000。"

图3

GS7D标记检测部分小麦品种 1: 豫农186; 2: 赛德麦1号; 3: 鲁原502; 4: 郑麦366; 5: 中育9302; 6: 龙科1221; 7: 濮兴0369; 8: 豫丰11; 9: 农大2011; 10: 郑品麦8号; 11: 高麦6号; 12: 丰德存麦5号; M: DL2000。"

表3

粒重基因的不同等位变异对小麦千粒重影响"

基因位点
Gene locus
等位变异
Allele
品种数量
Number of varieties
频率
Frequency (%)
2016年千粒重
TGW in 2016 (g)
2017年千粒重
TGW in 2017 (g)
均值
Mean (g)
TaCwi-A1 TaCwi-A1a 122 66.7 44.46* 46.61* 45.54*
TaCwi-A1b 61 33.3 43.40 45.65 44.52
TaGw8-B1 TaGw8-B1a 173 94.5 44.27** 46.51** 45.39**
TaGw8-B1b 10 5.5 41.34 42.46 41.90
TaGS-D1 TaGS-D1a 146 79.8 44.44** 46.71** 45.58**
TaGS-D1b 37 20.2 42.79 44.63 43.71

表4

TaCwi-A1、TaGS-D1和TaGw8-B1位点上不同等位变异组合对小麦千粒重的影响"

等位变异组合
Allelic variation combination
品种数量
Number of varieties
频率
Frequency (%)
表型
Phenotype
2016年千粒重
2016 TGW (g)
2017年千粒重
2017 TGW (g)
均值
Mean (g)
TaCwi-A1a/TaGS-D1a/TaGw8-B1a 96 52.5 H 43.67 45.71 44.69 a
TaCwi-A1b/TaGS-D1a/TaGw8-B1a 43 23.5 H 43.28 45.73 44.50 a
TaCwi-A1b/TaGS-D1b/TaGw8-B1a 13 7.1 M 41.56 43.53 42.54 b
TaCwi-A1a/TaGS-D1b/TaGw8-B1a 21 11.5 M 41.61 43.39 42.50 b
TaCwi-A1b/TaGS-D1a/TaGw8-B1b 5 2.7 ML 41.69 42.90 42.30 b
TaCwi-A1a/TaGS-D1b/TaGw8-B1b 3 1.6 ML 41.13 42.92 42.03 bc
TaCwi-A1a/TaGS-D1a/TaGw8-B1b 2 1.1 L 41.18 41.60 41.39 c
[1] 刘志勇, 王道文, 张爱民, 梁翰文, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才. 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19: 430-434.
Liu Z Y, Wang D W, Zhang A M, Liang H W, Lyu H Y, Deng X D, Ge Y Q, Wei X, Yang W C. Current status and perspective of wheat genomics, genetics, and breeding. J Plant Genet Resour, 2018, 19: 430-434 (in Chinese with English abstract).
[2] Zanke C D, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal M W, Röder M S. Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front Plant Sci, 2015, 6: 644.
[3] 宋健民, 戴双, 李豪圣, 程敦公, 刘爱峰, 曹新有, 刘建军, 赵振东. 山东省近年来审定小麦品种农艺和品质性状演变分析. 中国农业科学, 2013, 46: 1114-1126.
Song J M, Dai S, Li H S, Cheng D G, Liu A F, Cao X Y, Liu J J, Zhao Z D. Evolution of agronomic and quality traits of wheat cultivars released in Shandong province recently. Sci Agric Sin, 2013, 46: 1114-1126 (in Chinese with English abstract).
[4] 曹廷杰, 赵虹, 王西成, 崔党群, 詹克慧. 河南省半冬性小麦品种主要农艺性状的演变规律. 麦类作物学报, 2010, 30: 439-442.
Cao T J, Zhao H, Wang X C, Cui D Q, Zhan K H. Evolution of main agronomic traits for semi winter wheat varieties in Henan province. J Triticeae Crops, 2010, 30: 439-442 (in Chinese with English abstract).
[5] Ma D Y, Yan J, He Z H, Wu L, Xia X C. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed, 2012, 29: 43-52.
doi: 10.1007/s11032-010-9524-z
[6] Jiang Y M, Jiang Q Y, Hao C Y, Hou J, Wang L F, Zhang H N, Zhang S N, Chen X H, Zhang X Y. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theor Appl Genet, 2015, 128: 131-143.
doi: 10.1007/s00122-014-2417-5
[7] Zhang Y J, Liu J D, Xia X C, He Z H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed, 2014, 34: 1097-1107.
[8] Wang S S, Zhang X F, Chen F, Cui D Q. A single-nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat. Front Plant Sci, 2015, 6: 1166.
[9] Wang S S, Yan X F, Wang Y Y, Liu H M, Cui D Q, Chen F. Haplotypes of the TaGS5-A1 gene are its association with high thousand-kernel weight in Chinese bread wheat. Front Plant Sci, 2016, 7: 783.
[10] Hanif M, Gao F M, Liu J D, Wen W E, Zhang Y J, Rasheed A, Xia X C, He Z H, Cao S H. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed, 2016, 36: 1‒8.
[11] Hu M J, Zhang H P, Cao J J, Zhu X P, Wang S X, Jiang H, Wu Z Y, Lu J, Chang C, Sun G L, Ma C X. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed, 2016, 36: 1-11.
doi: 10.1007/s11032-015-0425-z
[12] Yang J, Zhou Y J, Wu Q H, Chen Y X, Zhang P P, Zhang Y, Hu W G, Wang X C, Zhao H, Dong L L, Han J, Liu Z Y, Cao T J. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theor Appl Genet, 2019, 132: 1799-1814.
doi: 10.1007/s00122-019-03316-1
[13] Ma M, Zhao H X, Li Z J, Hu S W, Song W N, Liu X L. TaCYP78A5 regulates seed size in wheat (Triticum aestivum). J Exp Bot, 2015, 67: 1397-1410.
doi: 10.1093/jxb/erv542
[14] 司文洁, 吴林楠, 郭利建, 周梦蝶, 刘香利, 马猛, 赵惠贤. 小麦粒重相关基因TaCYP78A5功能标记开发及验证. 作物学报, 2019, 45: 1905-1911.
Si W J, Wu L N, Guo L J, Zhou M D, Liu X L, Ma M, Zhao H X. Development and validation of the functional marker of grain weight-related gene TaCYP78A5 in wheat (Triticum aestivum L.). Acta Agron Sin, 2019, 45: 1905-1911 (in Chinese with English abstract).
[15] Yan X F, Zhao L, Ren Y, Dong Z D, Cui D Q, Chen F. Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Sci Rep, 2019, 9: 2702.
doi: 10.1038/s41598-019-38570-2
[16] 寇程, 高欣, 李立群, 李扬, 王中华, 李学军. 小麦粒重基因TaGW2-6A等位变异的组成分析及育种选择. 作物学报, 2015, 41: 1640-1647.
Kou C, Gao X, Li L Q, Li Y, Wang Z H, Li X J. Composition and selection of TaGW2-6A alleles for wheat kernel weight. Acta Agron Sin, 2015, 41: 1640-1647 (in Chinese with English abstract).
[17] 时佳, 白璐, 任毅, 穆培源, 梁晓东, 玛依拉, 耿洪伟. 新疆小麦TaGW2-6ATaCwi-A1TaSus2-2B等位变异对粒重的影响及应用. 分子植物育种, 2018, 16: 848-858.
Shi J, Bai L, Ren Y, Mu P Y, Liang X D, Ma Y L, Geng H W. Effects and application of allelic variation of TaGW2-6A, TaCwi-A1 and TaSus2-2B on grain weight of Xinjiang wheat. Mol Plant Breed, 2018, 16: 848-858 (in Chinese with English abstract).
[18] Chen F, Zhang F Y, Xia X C, Dong Z D, Cui D Q. Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein. Mol Breed, 2012, 29: 371-378.
doi: 10.1007/s11032-011-9553-2
[19] Cui F, Ding A M, Li J, Zhao C H, Li X F, Feng D S, Wang X Q, Wang L, Gao J R, Wang H G. Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level. J Genet, 2011, 90: 409-425.
pmid: 22227928
[20] Wu W, Li C J, Ma B L, Shah F, Liu Y, Liao Y C. Genetic progress in wheat yield and associated traits in China since 1945 and future prospects. Euphytica, 2014, 196: 155-168.
doi: 10.1007/s10681-013-1033-9
[21] Rasheed A, Xia X C, Ogbonnaya F, Mahmood T, Zhang Z W, Mujeeb-Kazi A, He Z H. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol, 2014, 14: 128.
doi: 10.1186/1471-2229-14-128 pmid: 24884376
[22] Gupta P K, Rustgi S, Kumar N. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 2006, 49: 565-571
doi: 10.1139/g06-063
[23] 相吉山, 穆培源, 桑伟, 聂迎彬, 徐红军, 庄丽, 崔凤娟, 韩新年, 邹波. 小麦粒重基因 TaCwi-A1功能标记CWI22、CWI21的验证及应用. 中国农业科学, 2014, 47: 2671-2679.
Xiang J S, Mu P Y, Sang W, Nie Y B, Xu H J, Zhuang L, Cui F J, Han X N, Zou B. Validation and application of function markers CWI22 and CWI21 of TaCwi-A1 gene related to wheat kernel weight. Sci Agric Sin, 2014, 47: 2671-2679 (in Chinese with English abstract).
[24] 刘永伟, 周硕, 王雪征, 孙果忠, 朱金永, 韩秋芬, 李春杰, 赵和, 王海波. 粒重基因TaCwi-A1等位变异在黄淮麦区小麦品种(系)中的分布及功能分析. 华北农学报, 2017, 32: 131-137.
Liu Y W, Zhou S, Wang X Z, Sun G Z, Zhu J Y, Han Q F, Li C J, Zhao H, Wang H B. Functional analysis and distribution of allelic variations of TaCwi-A1 gene related to kernel weight in Yellow and Huai River Valleys facultative wheat zone. Acta Agric Boreali-Sin, 2017, 32: 131-137 (in Chinese with English abstract).
[25] Lu J, Chang C, Zhang H P, Wang S X, Sun G L, Xiao S H, Ma C X. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat. PLoS One, 2015, 10: e0144765.
doi: 10.1371/journal.pone.0144765
[26] 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异. 作物学报, 2018, 44: 657-671.
Jian D W, Zhou Y, Liu H W, Yang L, Mai C Y, Yu L Q, Han X N, Zhang H J, Li H J. Functional markers reveal genetic variations in wheat improved cultivars and landraces from Xinjiang. Acta Agron Sin, 2018, 44: 657-671 (in Chinese with English abstract).
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!