作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1167-1177.doi: 10.3724/SP.J.1006.2012.01167
东金玉,万勇善*,刘风珍*
DONG Jin-Yu,WAN Yong-Shan*,LIU Feng-Zhen*
摘要: 利用同源克隆技术获得花生区组二倍体野生种A. duranensis和A. ipaensis Δ9-硬脂酰-ACP脱氢酶基因SAD (命名为gSAD-A和gSAD-B)及3个栽培品种的SAD,每个栽培品种有2个SAD (命名为gSAD-1和gSAD-2)。同时获得丰花2号SAD的两条全长cDNA (命名为FhrSAD-1和FhrSAD-2)。丰花2号的FhgSAD-1和FhgSAD-2均含有2个内含子,二者同源性97.5%,共有69个变异位点,其中62个是SNP位点、6个特异性酶切位点。FhrSAD-1和FhrSAD-2间核苷酸序列同源性98.6%,其中编码区序列同源性98.9%,共有12个变异位点,编码的Ah-SAD2氨基酸序列与Ah-SAD1相比在N端的17PSSSSSSSSSSFSL30丝氨酸聚集区少一个丝氨酸。gSAD-1和gSAD-A同源性为99.9%,存在4个SNP位点; gSAD-2和gSAD-B同源性为100%。推测gSAD-1和gSAD-2分别来自花生栽培品种的A、B2个染色体组。研究明确了花生不同染色体组SAD的序列特征,为进一步探讨SAD的表达及其在控制花生籽仁脂肪酸组分中的作用提供了重要的参考。
[1]Wan S-B(万书波). Peanut Quality (花生品质学). Beijing: China Agricultural Science and Technology Press, 2005. pp 2–10 (in Chinese)[2]Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of ahFAD2B control the the high oleic acid trait in cultivated peanut. Crop Sci, 2009, 49: 2029–2036[3]Yukawa Y, Takaiwa F, Shojik K, Masuda K, Yamada K. Structure and expression of two seed-specific cDNA encoding stearoyl-acyl carrier protein desaturase from sesame, Sesamum indicum. Plant Cell Physiol, 1996, 37: 201–205[4]Li X-D(李晓丹), Cao Y-L(曹应龙), Hu Y(胡亚), Xiao L(肖玲), Wu Y-H(武玉花), Wu G(吴刚), Lu C-M(卢长明). Fatty acid accumulation pattern in developing seeds of peanut. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(2): 157–162 (in Chinese with English abstract)[5]Wendy C, Paolo L, Nunzia S, Monica D P, Paola S, Virginia C, Noreen M C, Alan M M, Peter M, Tony A K, Philip J D, Stefania G, Teodoro C. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res, 2008, 17: 769–782[6]Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol, 2007, 63: 257–271[7]Byfield G E, Xue H, Upchurch R G. Two genes from soybean encoding soluble Δ9-stearoyl-ACP desaturase. Crop Sci, 2006, 46: 840–846[8]Ping Z, Joseph W B, Robert G U, Edward W, John S, Ralph E D. Mutations in a Δ9-Stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds. Crop Sci, 2008, 48: 2305–2313[9]Aardra K, John S, Edward W, Ludmila L, David H, Pradeep K. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol, 2007, 63: 257–271[10]Luo T, Deng W Y, Zeng J, Zhang F I. Cloning and characterization of a stearoyl-Acyl carrier protein desaturase gene from Cinnamomum longepaniculatum. Plant Mol Biol Rep, 2009, 27: 13–19[11]Florin S, Yael B, Arnon B, Ilan H, Ran H. Identification and molecular characterization of homeologous Δ9-Stearoyl-acyl carrier protein desaturase3 genes from the allotetraploid peanut (Arachis hypogaea). Plant Mol Biol Rep, 2010, 29: 232–241[12]Whittle E, Cahoon E B, Subrahmanyam S, Shanklin J. A multifunctional acyl-acyl carrier protein desaturase from Hedera helix L. (English ivy) can synthesize 16- and 18-carbon monoene and diene products. J Biol Chem, 2005, 280: 28169–28176[13]Zaborowska Z, Starzycki M, Femiak I, Swiderski M, Legocki A B. Yellow lupine gene encoding stearoyl-ACP desaturase-organization, expression and potential application. Acta Biochimicn Polonicn, 2002, 49: 29–42[14]Chen M N, Ren Z K, Chi X Y, Pan L J, Yu S L, Yang Q L. Isolation, characterization and expression analysis of stearoyl-ACP desaturase gene from Kosteletzkya virginica. Bioinform Biomed Engin (iCBBE), 2010, 4: 1–5[15]Shah F H, Rashid O, San C T. Temporal regulation of two isoforms of cDNA clones encoding delta 9-stearoyl-ACP desaturase from oil palm (Elaies guineensis). Plant Sci, 2000, 152: 27–33[16]Liu Q, Singh S P, Green A G. High-steric and oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol, 2002, 129: 1–12[17]Wendy C, Paolo L, Nunzia S, Monica D P, Paola S, Virginia C, Noreen M C, Alan M M, Peter M, Tony A K, Philip J D, Stefania G, Teodoro C. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res, 2008, 17: 769–782[18]Thompson G A, Scherer D E, Aken S F, Kenny J W, Young H L, Shintani D K, Kridl J C, Knauf V C. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci USA, 1991, 88: 2578–2582[19]Zhang D-Q(张党权), Tan X-F(谭晓风), Chen H-P(陈鸿鹏), Zeng Y-L(曾艳玲), Jiang Y(蒋瑶), Li W(李魏), Hu F-M(胡芳名). Full-length cDNA cloning and bioinformatic analysis of Camellia oleifera SAD. Sci Silv Sin (林业科学), 2008, 44(2): 155–159 (in Chinese with English abstract)[20]Dong S-Z(董胜张), Ye G-Y(叶恭银), Liu C-L(刘朝良). Research progress in molecular evolution of yolk proteins in insects. Acta Entomol Sin (昆虫学报), 2008, 51(11): 1 196–1 209 (in Chinese with English abstract)[21]Sappington T W, Raikhel A S. Molecular characteristics of insect vitellogenin and vitellogenin receptors. Insect Biochem Mol Biol, 1998, 28: 277–300[22]Lindqvist Y, Huang W, Schneider G, Shanklin J. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other diiron proteins. EMBO J, 1996, 15: 4081–4092[23]Krapovickas A, Gregory W C. Taxonomia del género Arachis (Leguminosae). Bonplandia, 1994, 8: 1–186[24]Valls J F M, Simpson C E: New species of Arachis from Brazil, Paraguay, and Bolivia. Bonplandia, 2005, 14: 35–64[25]Smartt J, Gregory W C, Gregory M P. The genomes of Arachis hypogaea L. cytogenetic studies of putative genome donor. Euphytica, 1978, 27: 665–675[26]Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F M, Ferreira M E. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol, 2004, 4: 11[27]Seijo G, Lavia G I, Fernández A, Krapovickas A, Ducasse D A, Bertioli D J, Moscone E A. Genomic relationships between the cultivated peanut (Arachis hypogaea Leguminosae) and its close relatives revealed by double GISH. Am J Bot, 2007, 94: 1963–1971[28]Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1–11[29]Fávero A P, Simpson C E, Valls J F M, Vello N A. Study of the evolution of cultivated peanut through crossability studies among Arachis ipaënsis, A. duranensis, and A. hypogaea. Crop Sci, 2006, 46: 1546–1552[30]Jung S, Tate P L, Horn R, Kochert G, Moore K, Abbott A G. The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered, 2003, 94: 334–340 |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[5] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[6] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[7] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[8] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[9] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[10] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[11] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[12] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[13] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
[14] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[15] | 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108. |
|