欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 794-800.doi: 10.3724/SP.J.1006.2010.00794

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

芥菜型油菜FAE1基因序列特征及其与芥酸含量关系的初步分析

徐爱遐1,2,黄镇2,马朝芝1,肖恩时2,张修森2,涂金星1,*,傅廷栋1   

  1. 1华中农业大学作物遗传改良国家重点实验室,湖北武汉430070;2西北农林科技大学农学院,陕西杨凌712100
  • 收稿日期:2009-10-13 修回日期:2010-02-07 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 涂金星, E-mail: tujx@mail.hzau.edu.cn; Tel: 027-87281819
  • 基金资助:

    本研究由陕西省自然科学基金项目(2005C108),国家技术研究发展计划(863计划)项目(2009AA101105)和西北农林科技大学唐仲英育种基金(A212020523)资助。

FAE1 Sequence Characteristics and Its Relationship with Erucic Acid Content in Brassica juncea

 XU Ai-Xia1,2,HUANG Zhen2, MA Chao-Zhi1, XIAO En-Shi2, ZHANG Xiu-Sen2, TU Jin-Xing1*, FU Ting-Dong1   

  1. 1National Key Laboratory of Crop Genetic Improvement,Huazhong Agricultural University,Wuhan 430070,China;2College of Agriculture,Northwest A&F University,Yangling 712100,china
  • Received:2009-10-13 Revised:2010-02-07 Published:2010-05-12 Published online:2010-03-15
  • Contact: TU Jin-Xing,E-mail:tujx@mail.hzau.edu.cn;Tel:027-87281819

摘要:

采用同源序列法对6个芥菜型油菜(Brassica juncea)品种(高芥酸、中芥酸、低芥酸)、2份白菜型油菜品种(高芥酸和低芥酸)和1份黑芥品种的FAE1基因进行克隆和测序表明,9个品种的FAE1基因编码区全长均为1 522 bp,不含内含子,均编码507个氨基酸残基。序列比较表明,芥菜型油菜中有两种FAE1基因序列(BjFAE1.1BjFAE1.2),其亲缘种白菜型油菜和黑芥中各有一种FAE1基因序列(BrFAE1BnFAE1), BjFAE1.1对应于白菜型油菜的BrFAE1, BjFAE1.2对应于黑芥BnFAE1BjFAE1.1BjFAE1.2之间存在71处核苷酸变异和Hind III不同的酶切位点(第1415位和第1144位), 蛋白质水平上存在15处氨基酸变异。比较不同芥酸含量品种的FAE1基因序列表明,BjFAE1.1基因存在2个SNP位点(第968位和第1265位), BjFAE1.2基因也有2个SNP位点(第49位和第237位),这4个SNP位点中有3个位点(第49位、第968位和第1 265位)导致蛋白质水平上氨基酸的差异。其中BjFAE1.1基因第968位的碱基变化(C→T)引起的第323位氨基酸变化(Thr→Ile),能够解释芥菜型油菜和白菜型油菜高芥酸到低芥酸(中芥酸)的转变;第1265位的碱基变化(T→C)引起的第422位的氨基酸变化(Phe→Ser),能够部分解释芥菜型油菜的高芥酸到低芥酸(中芥酸)的转变,白菜型油菜的高芥酸和低芥酸品种在该位点的碱基没有变化。BjFAE1.2基因第49位的碱基变化(T→C)引起的第17位氨基酸的变化(Phe→Leu),可以解释芥菜型油菜的中芥酸变成高芥酸(低芥酸)。陕西黄芥低芥酸突变株1278-3的FAE1基因序列和国外低芥酸品种比较,只在第1 265位出现变异。

关键词: 芥菜型油菜, FAE1, 克隆, 序列分析

Abstract:

Low erucic acid content, which may result from the differential mutation of the fatty acid elongation 1 (FAE1) gene, is a major breeding target in canola quality improvement. We cloned the FAE1 genes in six Brassica juncea varieties (with high, intermediate and low contents of erucic acid), and their sibling species: two B. rapa (with high erucic acid and low contents of erucic acid) and one B. nigra varieties by using the method of homologous sequencing. The results showed that the sequences of FAE1 genes in nine varieties were 1 522 bp without introns, and all encoded a protein of 507 amino acids. There were two FAE1 gene sequences (BjFAEBjFAE1.1 and BjFAE1.2) in B. juncea, and only one FAE1 gene sequence was in B. rapa (BrFAE1) and B. nigra (BnFAE1), respectively. BjFAE1.1 was corresponding to the BrFAE1 of B. rapa; and BjFAE1.2 was corresponding to BnFAE1 of B. nigra. There were 71 nucleotide variations and the different HindIII restriction sites (No. 1415 and No. 1144) and 15 amino acid variations in protein construction between BjFAE1.1 and BjFAE1.2. The FAE1 gene sequences comparison analysis showed that there were two SNPs (No. 968 and No. 1265) in BjFAE1.1, two SNPs (No. 49 and No. 237) in BjFAE1.2, three of the four SNPs (No. 49, No. 968, and No. 1265) resulted in differences in the amino acid level. The No. 323 amino acid in BjFAE1.1 gene was changed (Thr → Ile) duo to the change of the No. 968 base (C→T)), which could explain the decrease of erucic acid content in B. juncea and B. rapa. The point mutation at the No. 1265 base (T→C) resulted in the change at No. 422 amino acid (Phe→Ser), which could partially explained partly explained the variations from high erucic acid to low erucic acid in Brassica juncea, but no difference was found in No. 1265 in B. rapa varieties with high and low erucic acid content. The mutation at No. 49 base (T→C) resulted in No.17 amino acid change (Phe→Leu), which could explained the variations from intermediate erucic acid to high erucic acid (erucic acid) in B. juncea. We compared the FAE1 gene sequences of the low erucic acid yellow mustard mutant called 1278-3 from northern Shaanxi and the varieties with low erucic acid from foreign countries, the results showed that their difference was only in No.1265 base.

Key words: Brassica juncea, FAEl, Cloning, Sequence analysis


[1]         Xu A-X(徐爱遐), Huang J-Y(黄继英). Analysis and evaluation of rapeseed germplasm resources in Shaanxi Province. J Northwest Agric (西北农业大学学报), 1999, 8(3): 89–92 (in Chinese with English abstract)


[2]         Lemieux B, Miquel M, Somerville C, Browse J. Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet, 1990, 80: 234–240


[3]         Kunst L, Taylor D C, Underhill E W. Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem, 1992, 30: 425–434


[4]         James D W, Lim E, Keller J, Plooy I, Ralston E, Dooner H K. Directed tagging of the Arabidopsis fatty acid elongation 1 (FAE1) gene with the maize transposon activator. Plant Cell, 1995, 7: 309–319


[5]         Clemens S, Kunst L. Isolation of Brassica napus cDNA encoding β-ketoacyl-CoA synthase, a condensing enzyme involved in the biosynthesis of very long chain fatty acids in seeds. Plant Physiol, 1997, 115: 313–314


[6]         Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe T J. A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor Appl Genet, 1998, 96: 177–186


[8]         Han J, Lühs W, Sonntag K, Zähringer U, Borchardt D S, Wolter F P, Heinz E, Frentzen M. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol, 2001, 46: 229–239


[9]         Xiao L(肖玲), Lu C-M(卢长明). Cloning of fae1 gene partial sequence and SNP analysis in Brassica species. Sci Agric Sin (中国农业科学), 2005, 38(5): 891–896 (in Chinese with English abstract)


[10]      Wu Y-H(武玉花), Xiao L(肖玲), Wu G(吴刚), Lu C-M(卢长明). Cloning of FAE1 gene partial sequence and molecular analysis of A/C genomes in Brassica. Sci China (中国科学), 2007, 37(1): 35–41 (in Chinese)


[11]      Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D, Pradhan A K. Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet, 2004, 108: 743–749
Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13–15
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[6] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[7] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[8] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[11] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183.
[12] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[13] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[14] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331.
[15] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!