作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1766-1774.doi: 10.3724/SP.J.1006.2012.01766
王涛1,袁守江2,尹亮2,赵金凤1,万建民1,3,李学勇1,*
WANG Tao1,YUAN Shou-Jiang2,YIN Liang2,ZHAO Jin-Feng1,WAN Jian-Min1,3,LI Xue-Yong1,*
摘要:
水稻DUS测试标准品种之一丛矮2号(cl2)具有矮化多分蘖的表型特征,遗传分析表明该性状由1对隐性核基因控制,已将其定位在第4染色体长臂InDel标记C4-CL5和C4-CL4之间。对这两个标记之间一个已报道的多分蘖基因D17/HTD1进行测序,发现cl2中的D17/HTD1基因编码区第1 796个碱基由C突变为T,从而导致第599位的氨基酸由脯氨酸变成亮氨酸。同时对另一个来源于粳稻品种日本晴的矮化多分蘖突变体S1-40进行测序,发现D17/HTD1第3内含子3’端拼接点由AG突变为AA,导致mRNA产生2种错误的剪接形式。D17/HTD1编码类胡萝卜素裂解双加氧酶7 (Carotenoid Cleavage Dioxygenase7, CCD7),参与新型植物激素独脚金内酯(Strigolactones, SLs)的合成。利用SLs的人工合成类似物GR24处理cl2,其多分蘖表型得到抑制。系统进化树分析发现CCD7在几乎所有植物都有同源蛋白,水稻CCD7蛋白与同属禾本科的玉米、高粱和短柄草同源性最高。Real-time RT-PCR结果显示D17/HTD1基因在植物所有组织都有表达,尤以茎部最高。
[1]Wang Y, Li J. Branching in rice. Curr Opin Plant Biol, 2011, 14: 94–99[2]McSteen P, Leyser O. Shoot branching. Annu Rev Plant Biol, 2005, 56: 353–374[3]Gomez-Roldan V, Fermas S, Brewer P B, Puech-Page`s V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Be´card G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189–194[4]Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195–200[5]Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol, 2004, 14: 1232–1238[6]Johnson X, Brcich T, Dun E A, Goussot M, Haurogne K, Beveridge C A, Rameau C. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long distance signals. Plant Physiol, 2006, 142: 1014–1026[7]Simons J L, Napoli C A, Janssen B J, Plummer K M, Snowden K C. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol, 2007, 143: 697–706[8]Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687–698[9]Bainbridge K, Sorefan K, Ward S, Leyser O. Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J, 2005, 44: 569–580[10]Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge C A. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell, 2005, 17: 464–474[11]Snowden K, Simkin A, Janssen B, Templeton K, Loucas H, Simons J, Karunairetnam S, Gleave A, Clark D, Klee H. The decreased apical dominance1⁄ Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development, Plant Cell, 2005, 17: 746–759[12]Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019–1029[13]Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell, 2005, 8: 443–449[14]Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512–1525[15]Stirnberg P, Furner I J, Leyser O. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J, 2007, 50: 80–94[16]Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005, 46: 79–86[17]Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50: 1416–1424[18]Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z. Identi?cation and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009, 230: 649–658[19]Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B. Dwarf88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol, 2009, 71: 265–276[20]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325[21]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[22]Kamachi K, Yamaya T, Mae T, Ojima K. A role for glutamine synthetase in the recombination of leaf nitrogen during natural senescence in rice leaves. Plant Physiol, 1991, 96: 411–417[23]Zou J H, Chen Z X, Zhang S Y, Zhang W P, Jiang G H, Zhao X F, Zhai W X, Pan X B, Zhu L H. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta, 2005, 222: 604–612[24]Drummond R S, Martínez-Sánchez N M, Janssen B J, Templeton K R, Simons J L, Quinn B D, Karunairetnam S, Snowden K C. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol, 2009, 151: 1867–1877[25]Vogel J T, Walter M H, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin A J, Goulet C, Strack D, Bouwmeester H J, Fernie A R, Klee H J. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J, 2009, 61: 300–311[26]Koltai H. Strigolactones are regulators of root development. New Phytol, 2011, 190: 545–549 [27]Cook C E, Whichard L P, Turner B, Wall M E, Egley G H. Germination of witchweed (Striga lutea Lour.): isolation andproperties of a potent stimulant. Science, 1966, 154: 1189–1190 [28]Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435: 824–827[29]Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefe D G, Yoneyama K, Nogué F, Rameau C. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development, 2011, 138: 1531–1539[30]Schwartz S H, Qin X, Loewen M C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem, 2004, 279: 46940–46945[31]Beveridge C A, Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol, 2010, 13: 34–39[32]Zhou H, Liu Q J, Li J, Jiang D G, Zhou L Y, Wu P, Lu S, Li F, Zhu L Y, Liu Z L, Chen L T, Liu Y G, Zhuang C X. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res, 2012, 22: 649–660[33]Ding J H, Lu Q, Ouyang Y D, Mao H L, Zhang P B, Yao J L, Xu C G, Li X H, Xiao J H, Zhang Q F. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA, 2012, 109: 2654–2659 |
No related articles found! |
|