欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (06): 1117-1124.doi: 10.3724/SP.J.1006.2014.01117

• 研究简报 • 上一篇    下一篇

不同结荚习性大豆品种顶端花序发育过程的形态解剖学特征

姜妍1,2,吴存祥1,**,胡珀1,侯文胜1,祖伟2,韩天富1,*   

  1. 1中国农业科学院作物科学研究所 / 农业部北京大豆生物学重点实验室, 北京 100081; 2东北农业大学农学院, 哈尔滨 150030
  • 收稿日期:2013-11-06 修回日期:2014-03-04 出版日期:2014-06-12 网络出版日期:2014-04-08
  • 通讯作者: 韩天富, E-mail: hantianfu@caas.cn, Tel: 010-82105875
  • 基金资助:

    本研究由国家自然科学基金项目(30471054), 国家现代农业产业技术体系建设专项资金(CARS-04)和中国农业科学院科技创新工程项目资助。

Morphological and Anatomic Characteristics on Terminal Raceme Development of Soybean Varieties with Different Stem Termination Types

JIANG Yan1,2,WU Cun-Xiang1,**,HU Po1,HOU Wen-Sheng1,ZU Wei2,HAN Tian-Fu1,*   

  1. 1 Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Agriculture, Northeast Agricultural University, Harbin 150030, China
  • Received:2013-11-06 Revised:2014-03-04 Published:2014-06-12 Published online:2014-04-08
  • Contact: 韩天富, E-mail: hantianfu@caas.cn, Tel: 010-82105875

摘要:

结荚习性是大豆[Glycine max (L.) Merr.]最重要的株型相关性状之一。分别在自然光照、短日照(12 h)、长日照(16 h)条件下, 通过形态观察和解剖学研究, 比较短花序有限结荚习性大豆品种中黄13、长花序有限结荚习性品种凤交66-12和无限结荚习性品种中黄24顶端花序分化过程的差异。结果表明, 有限结荚习性品种出苗后20~24 d即开始顶端花序分化, 分化持续时间12~16 d, 比无限结荚习性品种分化起始早, 持续时间长; 长花序有限型品种凤交66-12比短花序有限型品种中黄13顶端花序分化的起始时间早, 分化速度快; 无限结荚习性品种顶端花序发育起始日期较晚, 分化时间短。短日照可使大豆顶端花序发育起始时间提前, 分化期缩短, 长日照则相反, 说明光照长度对大豆顶端花序的发育有明显影响。

关键词: 大豆;, 结荚习性, 顶端花序, 解剖学

Abstract:

Stem termination is one of the most important plant type-related traits in soybean (Glycine max [L.] Merr.). In this study, two determinate soybean varieties, Zhonghuang 13 (short terminal raceme) and Fengjiao 66-12(long terminal raceme), and an indeterminate variety Zhonghuang 24 were used to investigate the terminal raceme development processes through morphological and anatomic observations. Three soybean varieties were subjected to Beijing natural day (ND), 12 hours short day (SD) and 16 hours long day (LD) treatments, respectively. The results showed that the determinate varieties initiated the terminal racemes at 20–24 days after emergence, and the durations of the terminal raceme development were 12–16 days, which were earlier and longer than those of the indeterminate ones, respectively. Among the determinate varieties, Fengjiao 66-12 with longer terminal raceme initiated apical raceme earlier, and the differentiation was faster compared with Zhonghuang 13 with shorter terminal raceme. Beginning stage of the terminal raceme development in indeterminate variety Zhonghuang 24 was later, and the differentiation duration was shorter compared with determinate varieties. The beginning stage of the terminal raceme development was earlier, and the terminal raceme differentiation was accelerated under SD condition. Taken together, it indicated that photoperiod could affect the terminal raceme development of soybean.

Key words: Soybean, Stem termination types, Terminal raceme, Anatomic

[1]姜德锋, 张伟, 徐锐亭, 梁凤美, 孙贤明. 不同株型高产大豆的生长特性研究. 莱阳农学院学报, 2004, 21: 288–292



Jiang D F, Zhang W, Xu R T, Liang F M, Sun X M. Studies on the growing characteristic of high yield soybean in different plant-types. J Laiyang Agric Coll, 2004, 21: 288–292 (in Chinese with English abstract)



[2]Hu N, Lu C G, Yao K M, Chen J, Zhang X C. Analysis and simulation of plant type on canopy structure and radiation transmission in rice. Rice Sci, 2013, 20: 229–237



[3]刘顺湖, 王晋华, 张孟臣, 盖钧镒. 大豆茎生长习性类型鉴别方法研究. 大豆科学, 2005, 24: 81–89



Liu S H, Wang J H, Zhang M C, Gai J Y. A study on identification procedure for soybean stem growth habit type. Soybean Sci, 2005, 24: 81–89 (in Chinese with English abstract)



[4]Jiang Y, Wu C, Zhang L, Hu P, Hou W, Zu W, Han T. Long-day effects on the terminal inflorescence development of a photoperiod-sensitive soybean [Glycine max (L.) Merr.] variety. Plant Sci, 2011, 180: 504–510



[5]Hicks, D R, Pendleton, J W, Bernard, R L, Johnston T J. Response of soybean plant types to planting patterns. Agron J, 1969, 61: 290–293



[6]Woodworth C W. Genetics and breeding in improvement of soybean. Univ Illinois Agric Exp Sta Bull, 1932, 384: 297–404



[7]Ting C L. Genetic studies on the wild and cultivated soybeans. J Am Soc Agron, 1946, 38: 381–393



[8]刘顺湖, 王玮. 大豆结荚习性的主要成分性状的筛选. 济宁师专学报, 1995, (3): 60–63



Liu S H, Wang W. Selection of main components characters for soybean stem growth habit type. J Jining Teachers Coll, 1995, (3): 60–63 (in Chinese)



[9]田佩占. 大豆育种的结荚习性问题. 遗传学报, 1975, 2: 337–343



Tian P Z. On the pod-bearing habit in soybean breeding. Acta Genet Sin, 1975, 2: 337–343 (in Chinese)



[10]Bernard R L. Two genes affecting stem termination in soybean. Crop Sci, 1972, 12: 235–239



[11]Thseng F S, Hosokswa S. Significance of growth habit in soybean breeding: I. Varietal differences in characteristics of growth habit. Jpn J Breed, 1972, 22: 261–268



[12]曹大铭. 大豆结荚习性的研究: 不同结荚习性大豆的主要区别与识别. 作物学报, 1982, 8: 81–96



Chao D M. Studies on the pod-setting habit of soybean: the main differences of soybean with different pod-setting habit and their identification. Acta Agron Sin, 1982, 8: 81–86 (in Chinese with English abstract)



[13]祝其昌. 大豆结荚习性的研究: 1. 不同结荚习性的本质区别及其分类. 大豆科学, 1984, 3: 318–326



Zhu Q C. Studies on the growth habit of soybean 1. The substantial difference of different habit of soybean and their classification. Soybean Sci, 1984, 3: 318–326 (in Chinese with English abstract)



[14]王晋华, 汪越胜, 盖钧镒. 大豆茎生长习性分类方法的研究-有限型与无限型茎顶的特征与识别标记. 大豆科学, 2001, 20: 5–8



Wang J H, Wang Y S, Gai J Y. A study on identification method of stem-growth habit types (SGHT) in soybeans-characteristics and identification marks of stem termination of determinate and indeterminate. Soybean Sci, 2001, 20: 5–8 (in Chinese with English abstract)



[15]王晋华, 张孟臣, 盖钧镒. 大豆茎生长习性分类方法的研究-茎顶花序-1/3节位相对值法. 大豆科学, 2002, 21: 47–51



Wang J H, Zhang M C Gai J Y. A study on identification method of stem-growth habit types (sght) in soybean- apical raceme- 1/3 the relative value of node location. Soybean Sci, 2002, 21: 47–51 (in Chinese with English abstract)



[16]蒋青, 李扬汉. 有限性和无限性大豆的解剖初探. 大豆科学, 1990, 9: 213–219



Jiang Q, Li Y H. Anatomical study on the determinate and the indeterminate soybeans. Soybean Sci, 1990, 9: 213–219 (in Chinese with English abstract)



[17]游明安, 盖钧镒. 大豆花序性状的研究现状. 中国油料, 1995, 17(1): 74–77



You M A, Gai J Y. Study status of soybean inflorescence characters, Chin J Oil Crop Sci, 1995, 17(1): 74–77 (in Chinese with English abstract)



[18]Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198–210



[19]Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563–8568



[20]Yamagishi N, Yoshikawa N. Expression of FLOWERING LOCUS T from Arabidopsis thaliana induces precocious flowering in soybean irrespective of maturity group and stem growth habit. Planta, 2011, 233: 561–568



[21]韩天富, 王金陵. 大豆开花后光周期反应的研究. 植物学报, 1995, 37: 863–869



Han T F, Wang J L. Studies on the post-flowering photoperiodic responses in soybean. Acta Bot Sin, 1995, 37: 863–869 (in Chinese with English abstract)



[22]吴存祥, 刘金, 李兴宗, 苗以农, 杨华, 韩天富. 扁茎大豆的花序形态受光周期调控. 中国油料作物学报, 2004, 26(1): 36–41



Wu C X, Liu J, Li X Z, Miao Y N, Yang H, Han T F. Photoperiod regulates morphology of terminal inflorescence in fasciated soybean. Chin J Oil Crop Sci, 2004, 26(1): 36–41 (in Chinese with English abstract)



[23]Han T, Wu C, Mentreddy R S, Zhao J, Xu X, Gai J. Post-flowering photoperiod effects on reproductive development and agronomic traits of long-day and short-day crops. J Agron Crop Sci, 2005, 191: 255–262



[24]Li X M, Wu C X, Ma Q B, Zhang S, Li C L, Zhang X Y, Han T F. Morphology and anatomy of the differentiation of flower buds and the process of flowering reversion in soybean cv. Zigongdongdou. Acta Agron Sin, 2005, 31: 1437–1442



[25]Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T, Abe J. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol, 2013, 13: 91



[26]Battey N H, Lyndon R F. Reversion of flowering. Bot Rev, 1990, 56: 162–189



[27]韩天富, 盖钧镒, 王金陵, 周东兴. 大豆开花逆转现象的发现. 作物学报, 1998, 24: 168–171



Han T F, Gai J Y, Wang J L, Zhou D X. Discovery of flowering reversions in soybean plant. Acta Agron Sin, 1998, 24: 168–171 (in Chinese with English abstract)



[28]Washburn C F, Thomas J F. Reversion of flowering in Glycine max. Am J Bot, 2000, 87: 1425–1438



[29]吴存祥, 韩天富.植物开花逆转研究进展. 植物学通报, 2002, 19: 523–529



Wu C X, Han T F. Progress in study of flowering reversion in plants. Chin Bull Bot, 2002, 19: 523–529 (in Chinese with English abstract)



[30]Wu C, Ma Q, Yam KM, Cheung M-Y, Xu Y, Han T, Lam H M, Chong K. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta, 2006, 223: 725–735



[31]Fehr W R, Caviness C E. Stages of Soybean Development. Spec. Rep. No. 80, Iowa State University, Ames, IA, USA, 1977



[32]李正理. 植物解剖学. 北京: 科学出版社, 1973. pp 47–48



Li Z L. Plant Anatomy. Beijing: Science Press,1973. pp 47–48 (in Chinese)



[33]李文雄, 曾寒冰. 春小麦穗分化的特点及其与高产栽培的关系. 中国农业科学, 1979, (1): 1–9



Li W X, Zeng H B. The characteristics of spike differentiation and its relationship to high-yielding culture in spring wheat. Acta Agric Sin, 1979, (1): 1–9 (in Chinese with English abstract)



[34]姜妍, 冷建田, 费志宏, 冯涛, 祖伟, 王连铮, 韩天富, 吴存祥. 广适应大豆品种中黄13的光周期反应. 大豆科学, 2009, 28: 377–393



Jiang Y, Leng J T, Fei Z H, Feng T , Wang L Z, Han T F, Wu C X. Photoperiod responses of a widely-adapted soybean cultivar of Zhonghuang 13. Soybean Sci, 2009, 28: 377–393 (in Chinese with English abstract)



[35]米国华, 李文雄. 温光互作对春性小麦小穗建成的效应. 作物学报, 1999, 25: 186–192



Mi G H, Li W X. Effects of photo-thermal interaction on spikelet formation in spring wheat. Acta Agron Sin, 1999, 25: 186–192 (in Chinese with English abstract)



[36]常汝镇. 中国大豆遗传资源的分析研究: III. 大豆生育习性和结荚习性分布特点. 作物品种资源, 1990, (2): 1–2



Chang R Z. Analysis and study of Soybean genetic resources in China: III. distribution characteristics of soybean growth habits and pod bearing habit. Crop Genetc Resours, 1990, (2): 1–2 (in Chinese)



[37]孙培乐, 宋兆华. 不同结荚习性大豆品种生育特性的研究. 大豆科技, 2008, (5): 17–20



Sun P L, Song Z H. Study on growth characteristics of soybean varieties  with different pod-bearing habits. Soybean Sci Techno, 2008, (5): 17–20 (in Chinese)

[1] 马岩松,刘章雄,文自翔,魏淑红,杨春明,王会才,杨春燕,卢为国,徐冉,张万海,吴纪安,胡国华,栾晓燕,付亚书,郭. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响[J]. 作物学报, 2018, 44(01): 43-52.
[2] 王吴彬,何庆元,杨红燕,向仕华,邢光南,赵团结,盖钧镒. 大豆结荚习性、荚色和种皮色相关野生片段分析[J]. 作物学报, 2013, 39(07): 1155-1163.
[3] 秦君;李英慧;刘章雄;栾维江;闫哲;关荣霞;张孟臣;常汝镇;李广敏;马峙英;邱丽娟. 黑龙江省大豆遗传结构及遗传多样性分析[J]. 作物学报, 2009, 35(2): 228-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!