欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (10): 1472-1480.doi: 10.3724/SP.J.1006.2015.01472

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

兼抗型成株抗性小麦品系的培育、鉴定与分子检测

刘金栋1,杨恩年2,肖永贵1,陈新民1,伍玲2,白斌3,李在峰4,Garry M. ROSEWARNE2,5,夏先春1*,何中虎1,5,*   

  1. 1中国农业科学院作物科学研究所 / 国家小麦改良中心, 北京 100081; 2四川省农业科学院作物研究所, 四川成都 610066; 3甘肃省农业科学院小麦研究所, 甘肃兰州 730070; 4河北农业大学植物保护学院, 河北保定 071001; 5CIMMYT中国办事处, 北京 100081
  • 收稿日期:2015-03-21 修回日期:2015-05-04 出版日期:2015-10-12 网络出版日期:2015-05-25
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2013CB127700), 国家自然科学基金项目(31261140370), 引进国际先进农业科学技术计划(948计划)项目和科技部国际科技合作项目(2012DFA32290)资助。

Development, Field and Molecular Characterization of Advanced Lines with Pleiotropic Adult-Plant Resistance in Common Wheat

LIU Jin-Dong1,YANG En-Nian2,XIAO Yong-Gui1,CHEN Xin-Min1,WU Ling2,BAI Bin3,LI Zai-Feng4,Garry M. ROSEWARNE2,5,XIA Xian-Chun1,*,HE Zhong-Hu1,5,*   

  1. 1 Institute of Crop Science / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; 2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 3 Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 4 College of Plant Protection, Agricultural University of Hebei, Baoding 071001, China; 5CIMMYT-China Office, c/o CAAS, Beijing 100081, China
  • Received:2015-03-21 Revised:2015-05-04 Published:2015-10-12 Published online:2015-05-25

摘要:

小麦条锈病、叶锈病和白粉病是我国小麦的重要真菌病害,培育兼抗型成株抗性品种是控制病害最为经济有效和持久安全的方法。本研究选用由成株抗性育种方法培育的21份冬小麦高代品系和96份春小麦高代品系,在多个环境下进行这3种病害的成株期抗性鉴定,并利用紧密连锁的分子标记检测了兼抗型基因Lr34/Yr18/Pm38Lr46/Yr29/Pm39Sr2/Yr30的分布。田间鉴定表明,21份冬小麦品系中有17份兼抗3种病害,占80.9%96份春小麦品系中有85份兼抗3种病害,占88.5%。分子标记检测发现,21份冬小麦品系均含QPm.caas-4DL,其中7份还含QPm.caas-2BS9份还含QPm.caas-2BL96份春小麦品系中,18份含Lr34/Yr18/Pm3837份含Lr46/Yr29/Pm3929份含Sr2/Yr30。以上结果表明,分子标记与常规育种相结合,可有效培育兼抗型成株抗性品种,为我国小麦抗病育种提供了新思路。

关键词: 普通小麦, 兼抗型, 成株抗性, 条锈病, 叶锈病, 白粉病

Abstract:

Stripe rust, leaf rust, and powdery mildew are devastative fungal diseases of common wheat (Triticum aestivum L.) in China, and breeding cultivars with pleiotropic adult-plant resistance is believed to be the most important solution to control these diseases effectively and environmental friendly. A total of 21 winter wheat advanced lines and 96 spring wheat advanced lines collected from adult-plant resistance breeding programs were used to estimate the level of resistance against the stripe rust, leaf rust and powdery mildew across several environments. Simultaneously, the distribution of pleiotropic resistance genes Lr34/Yr18/Pm38, Lr46/Yr29/Pm39, and Sr2/Yr30 were also detected using molecular marker closely linked to the target genes. The field test showed that 17 winter wheat lines (80.9%) and 85 spring wheat lines (88.5%) performed acceptable resistance against the three diseases. All the 21 winter wheat lines tested contain QPm.caas-4DL, of which seven contain QPm.caas-2BS and nine contain QPm.caas-2BL. Among the 96 spring wheat lines, 18 carry Lr34/Yr18/Pm38, 37 carry Lr46/Yr29/Pm39, and 29 lines possess Sr2/Yr30. These results indicate that molecular-marker-assistant selection in combination with conventional breeding is effective and applicable in developing pleiotropic adult-plant resistance cultivars, which provides a new thought for wheat resistance breeding.

Key words: Triticum aestivum L., Pleiotropic resistance, Adult-plant resistance, Stripe rust, Leaf rust, Powdery mildew

[1]Wellings C R, McIntosh R A, Hussain M. A new source of resistance to Puccinia striiformis f. sp. tritici in spring wheats (Triticum aestivum). Plant Breed, 1988, 100: 288–296



[2]Conner R L, Kuzyk A D, Su H. Impact of powdery mildew on the yield of soft white spring wheat cultivars. Can J Plant Sci, 2003, 83: 725–728



[3]何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展和展望. 中国农业科学, 2011, 44: 2193–2215



He Z H, Lan C X, Chen X M, Zou Y C, Zhuang Q S, Xia X C. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agric Sin, 2011, 44: 2193–2215 (in Chinese with English abstract)



[4]Zhao X L, Zheng T C, Xia X C, He Z H, Liu D Q, Yang W X, Yin G H, Li Z F. Molecular mapping of leaf rust resistance gene LrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 2008, 117: 1069–1075



[5]Gustafson G D, Shaner G. Influence of plant age on the expression of slow-mildewing resistance in wheat (Triticum aestivum). Phytopathology, 1982, 72: 746–749



[6]Singh R P, Huerta-Espino J, Bhavani S, Herrera-Foessel S A, Singh D, Singh P K, Velu G, Mason R E, Jin Y, Njau P, Crossa J. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 2011, 179: 175–186



[7]Rosewarne G M, Herrera-Foessel S A, Singh R P, Huerta-Espino J, Lan C X, He Z H. Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet, 2013, 126: 2427–2449



[8]McIntosh R A, Dubcovsky J, Rogers W J, Morris C F, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2013-2014 supplement. 2014. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013-2014.pdf



[9]Li Z F, Lan C X, He Z H, Singh R P, Rosewarne G M, Chen X M, Xia X C. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci, 2014, 54: 1907–1925



[10]Lillemo M, Asalf B, Singh R P, Huerta-Espino J, Chen X M, He Z H, Bjørnstad Å. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155–1166



[11]Lagudah E S, McFadden H, Singh R P, Huerta-Espino J, Bariana H S, Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet, 2006, 114: 21–30



[12]梁丹, 杨芳萍, 何中虎, 姚大年, 夏先春. 利用 STS 标记检测CIMMYT小麦品种(系)中Lr34/Yr18, Rht-B1b和Rht-D1b基因的分布. 中国农业科学, 2009, 42: 17–27



Liang D, Yang F P, He Z H, Yao D N, Xia X C. Characterization of Lr34/Yr18, Rht-B1b, Rht-D1b genes in CIMMYT wheat cultivars and advanced lines using STS markers. Sci Agric Sin, 2009, 42: 17–27 (in Chinese with English abstract)



[13]Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360–1363



[14]Rosowarne G M, Singh R P, Huerta-Espino J, William H M, Bouchet S, Cloutier S, McFadden H, Lagudah E S. Leaf tip necrosis, molecular markers and β-proteasome subunits associated with the slow rusting resistance gene Lr46/Yr29. Theor Appl Genet, 2006, 112: 500–508.



[15]Singh R P. Genetic association of leaf rust resistance gene Lr34 with adult-plant resistance to stripe rust in bread wheat. Phytopathology, 1992, 82: 835–838



[16]Lillemo M, Joshi A K, Prasad R, Chand R, Singh R P. QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet, 2013,126: 711–719



[17]Skovmand B, Wilcoxson R D, Shearer B L, Stucker R E. Inheritance of slow rusting to stem rust in wheat. Euphytica, 1978, 27: 95–107



[18]Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah E S, Ellis J, Spielmeyer W. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet, 2011, 122: 735–744



[19]Herrera-Foessel S A, Lagudah E S, Huerta-Espino J, Hayden M, Bariana H S, Singh R P. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet, 2011, 122: 239–249



[20]McIntosh R A, Dubcovsky J, Rogers W J, Morris C F, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2012 supplement. 2012. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2012.pdf



[21]Forrest K, Pujol V, Bulli P, Pumphrey M, Wellings C, Herrera-Foessel S, Huerta-Espino J, Singh R, Lagudah E, Hayden M, Spielmeyer W. Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach. Mol Breed, 2014, 34: 2109–2118



[22]Singh R P, William H M, Huerta-Espino J, Rosewarne G. Wheat rust in Asia: Meeting the challenges with old and new technologies. In: New Directions for a Diverse Planet. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia. 2004, 26



[23]Lan C X, Liang S S, Wang Z L, Yan J, Zhang Y, Xia X C, He Z H. Quantitative trait loci mapping for adult-plant resistance against powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology, 2009, 99: 1121–1126



[24]Lan C X, Ni X W, Yan J, Zhang Y, Xia C X, Chen X M, He Z H. Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol Breed, 2010, 25: 615–622



[25]Bai B, He Z H, Asad M A, Lan C X, Zhang Y, Xia X C, Yan J, Chen X M, Wang C S. Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat. Crop Pasture Sci, 2011, 63: 606–611



[26]伍玲, 夏先春, 朱华忠, 李式昭, 郑有良, 何中虎. CIMMYT 273个小麦品种抗病基因Lr34/Yr18/Pm38的分子标记检测. 中国农业科学, 2010, 43: 4553–4561



Wu L, Xia X C, Zhu H Z, Li S Z, Zheng Y L, He Z H. Molecular characterization of Lr34/Yr18/Pm38 in 273 CIMMYT wheat cultivars and lines using functional markers. Sci Agric Sin, 2010, 43: 4553–4561 (in Chinese with English abstract)



[27]Li Z F, Xia X C, He Z H, Li X, Zhang L J, Wang H Y, Meng Q F, Yang W X, Li G Q, Liu D Q. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Dis, 2010, 94: 45–53



[28]Peterson R F, Campbell A B, Hannah A E. A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Can J Res, 1948, 26: 496–500



[29]Ren Y, Li Z F, He Z H, Wu L, Bai B, Lan C X, Wang C F, Zhou G, Zhu H Z, Xia X C. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet, 2012, 125: 1253–1262



[30]Lan C X, Liang S S, Zhou X C, Zhou G, Lu Q L, Xia X C, He Z H. Identification of genomic regions controlling adult plant stripe rust resistance to in Chinese wheat landrace Pingyuan 50 through bulked segregant analysis. Phytopathology, 2010, 100: 313–318



[31]Lu Y M, Lan C X, Liang S S, Zhou X C, Liu D, Zhou G, Lu L Q, Jing J X, Wang M N, Xia X C, He Z H. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet, 2009, 119: 1349–1359



[32]Kaur J, Bariana H S. Inheritance of adult plant stripe rust resistance in wheat cultivars Kukri and Sunco. J Plant Pathol, 2010, 92: 391–394



[33]Rosewarne G M, Singh R P, Huerta-Espino J, Herrera-Foessel S A, Forrest K L, Hayden M J, Rebetzke G J. Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet, 2012, 124: 1283–1294



[34]Lan C X, Rosewarne G M, Singh R P, Herrera-Foessel S A, Huerta-Espino J, Basnet B R, Yang E N. QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin# 1. Mol Breed, 2014, 34: 789–803



[35]刘金栋, 陈新民, 何中虎, 伍玲, 白斌, 李在峰, 夏先春. 小麦慢白粉病QTL对条锈病和叶锈病的兼抗性. 作物学报, 2014, 40: 1557–1564



Liu J D, Chen X M, He Z H, Wu L, Bai B, Li Z F, Xia X C. Resistance of slow mildewing genes to stripe rust and leaf rust in common wheat. Acta Agron Sin, 2014, 40: 1557–1564 (in Chinese with English abstract)



[36]张勇, 申小勇, 张文祥, 陈新民, 阎俊, 张艳, 王德森, 王忠伟, 刘悦芳, 田宇兵, 夏先春, 何中虎. 高分子量谷蛋白5+10亚基和1B/1R易位分子标记辅助选择在小麦品质育种中的应用. 作物学报, 2012, 38: 1743–1751



Zhang Y, Shen X Y, Zhang W X, Chen X M, Yan J, Zhang Y, Wang D S, Wang Z W, Liu Y F, Tian Y B, Xia X C, He Z H. Marker-Assisted Selection of HMW-Glutenin 1Dx5+1Dy10 Gene and 1B/1R Translocation for Improving Industry Quality in Common Wheat. Acta Agron Sin, 2012, 38: 1743–1751 (in Chinese with English abstract)

[1] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[2] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[3] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[4] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[5] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[6] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063.
[7] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[8] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
[9] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[10] 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749.
[11] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[12] 郑慧敏,温晓蕾,郝晨阳,张培培,GEBREWAHID Takele Weldu,闫晓翠,刘大群,张学勇,李在峰. 70份国外小麦品种(系)的苗期和成株期抗叶锈病鉴定[J]. 作物学报, 2019, 45(10): 1455-1467.
[13] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[14] 李玉玲,蒋正宁,胡文静,李东升,程婧晔,裔新,程晓明,吴荣林,程顺和. CIMMYT小麦种质C615抗叶锈病QTL分析[J]. 作物学报, 2018, 44(6): 836-843.
[15] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!