欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (04): 614-619.doi: 10.3724/SP.J.1006.2018.00614

• 研究简报 • 上一篇    下一篇

玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定

肖明纲1,2(), 宋凤景3, 孙兵2, 左辛4, 赵广山5, 辛爱华2, 李柱刚2,*()   

  1. 1黑龙江省农业科学院博士后科研工作站, 黑龙江哈尔滨 150086
    2黑龙江省农业科学院耕作栽培研究所/黑龙江省寒地作物生理生态实验室/黑龙江省作物分子设计与种质创新重点实验室, 黑龙江哈尔滨 150086
    3青岛市农业科学研究院, 山东青岛 266109
    4黑龙江省农业科学院农村能源研究所, 黑龙江哈尔滨 150086
    5佳木斯市农业技术推广总站, 黑龙江佳木斯 154002
  • 收稿日期:2017-08-30 接受日期:2018-01-08 出版日期:2018-01-30 网络出版日期:2018-01-30
  • 通讯作者: 李柱刚
  • 作者简介:

    xiaoyang8076@163.com

  • 基金资助:
    本研究由黑龙江省博士后基金项目(LB-Z14186)资助

Exploration of Foreign Maize Inbred Lines with Broad Spectrum Resistance to Northern Corn Leaf Blight and Preliminary Identification of Resistance Genes

Ming-Gang XIAO1,2(), Feng-Jing SONG3, Bing SUN2, Xin ZUO4, Guang-Shan ZHAO5, Ai-Hua XIN2, Zhu-Gang LI2,*()   

  1. 1 Postdoctoral Programme, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    2 Heilongjiang Province Cold Region Crop Physiology and Ecology Laboratory / Key Laboratory of Crop Molecular Design and Germplasm Innovation in Heilongjiang Province Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    3 Qingdao Academy of Agricultural Science, Qingdao 266109, Shandong, China
    4 Ruaral Energy Sources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    5 Agricultural Technology Extension Station of Jiamusi City, Jiamusi 154002, Heilongjiang, China
  • Received:2017-08-30 Accepted:2018-01-08 Published:2018-01-30 Published online:2018-01-30
  • Contact: Zhu-Gang LI
  • Supported by:
    This study was supported by Heilongjiang Postdoctoral Fund (LB-Z14186).

摘要:

从2014—2016年连续3年对43份来自美国、法国、俄罗斯和德国的玉米资源进行了抗大斑病人工接种鉴定, 筛选到高抗玉米大斑病材料7份, 抗病材料1份, 中抗材料6份, 抗性材料占鉴定总材料的比例为32.6%。利用F2群体, 对7份高抗材料进行了大斑病抗性遗传分析, 抗感植株分离比例和适合性测验证明, 自交系A04、F02、F05和R01对大斑病的抗性可能是由一对显性基因控制的。抗谱分析表明, 自交系A04、F02、F05和R01携带的抗大斑病基因不同于Ht1Ht2Ht3HtN, 可能是新的抗病基因。该研究结果可为今后我国玉米大斑病抗性种质的引进及改良提供重要参考。

关键词: 玉米自交系, 大斑病, 抗性评价, 遗传分析

Abstract:

From 2014 to 2016, forty-three maize inbred lines introduced from the United States, France, Russia and Germany, were identified and evaluated for resistance to northern corn leaf blight (NCLB). The results showed that seven, one and six maize inbreds were highly resistant, resistant or moderately resistant to NCLB, accounting for 32.6%. Exserohilum turcicum was used to test the F2 populations for analyzing the inheritance of NCLB resistance in the seven highly resistance maize inbred lines. Genetic analysis suggested that A04, F02, F05, and R01 of these inbred lines probably carried a single dominant gene conferring their resistance to NCLB. The reaction patterns to isolates 0, 1, 2, N, and 123N of E. turcicum showed that new genes resistance to NCLB were most likely present in A04, F02, F05, and R01. The results provided useful information on the introduction of maize germplasms and genetic improvement for resistance to NCLB.

Key words: maize inbred lines, northern corn leaf blight, resistance evaluation, inheritance

图1

外引材料2014年大斑病抗性级别分布 HR: 高抗; R: 抗; MR: 中抗; S: 感; HS: 高感。"

图2

外引材料高抗和高感大斑病田间表型 A04、G03: 自交系; HR: 高抗; HS: 高感。"

表1

14份外引材料对玉米大斑病多年抗性鉴定"

自交系
Inbred lines
来源
Origin
2014 2015 2016
病斑面积
Lesion area
(%)
抗性评价
Resistance
evaluation
病斑面积
Lesion area
(%)
抗性评价
Resistance
evaluation
病斑面积
Lesion area
(%)
抗性评价
Resistance
evaluation
A02 美国America 15 MR 10 R 17 MR
A04 美国America 1 HR 1 HR 1 HR
A05 美国America 12 MR 12 MR 12 MR
A08 美国America 23 MR 20 MR 25 MR
A11 美国America 5 HR 5 HR 5 HR
A18 美国America 11 MR 11 MR 10 R
A20 美国America 25 MR 25 MR 20 MR
A24 美国America 0 HR 0 HR 0 HR
A28 美国America 13 MR 15 MR 10 R
F02 法国France 1 HR 3 HR 3 HR
F03 法国France 9 R 7 R 9 R
F05 法国France 2 HR 1 HR 1 HR
R01 俄罗斯Russia 4 HR 4 HR 4 HR
G02 德国Germany 0 HR 1 HR 0 HR

表2

7个F2群体对大斑凸脐蠕孢的抗性反应"

杂交组合
Cross
抗病植株数
R
感病植株数
S
分离比
χ2
P
P-value
获白/A04 Huobai/A04 448 132 1.5540 0.2125
获白/A11 Huobai/A11 416 168 4.4201 0.0355
获白/A24 Huobai/A24 400 160 3.8095 0.0510
获白/F02 Huobai/F02 438 130 1.3521 0.2449
获白/F05 Huobai/F05 438 142 0.0828 0.7736
获白/R01 Huobai/R01 454 158 0.2179 0.6407
获白/G02 Huobai/G02 432 172 3.8940 0.0485

表3

4份玉米自交系对0、1、2、N和123N的反应型"

自交系
Inbred line
小种鉴定结果Identification of species
0 1 2 N 123N
A619 S S S S S
A619Ht1 R S R R S
A619Ht2 R R S R S
A619Ht3 R R R R S
A619HtN R R R S S
A04 R R R R R
F02 R R R R R
F05 R R R R R
R01 R R R R R
[1] 王晓鸣, 石洁, 晋齐鸣, 李晓, 孙世贤. 玉米病虫害田间手册. 北京: 中国农业科学技术出版社, 2010. pp 1, 250, 264-265
Wang X M, Shi J, Jin Q M, Li X, Sun S X.Field Manual of Maize Pests and Diseases. Beijing: China Science and Technology Press, 2010. pp 1, 250, 264-265 (in Chinese)
[2] 温义鹏, 李成军, 于培洋, 从方志, 郭宝贵, 朱秀森, 姜傅俊, 刘伟. 不同玉米自交系对大斑病和灰斑病抗性分析. 玉米科学, 2012, 20(1): 135-137
Wen Y P, Li C J, Yu P Y, Cong F Z, Guo B G, Zhu X S, Jiang F J, Liu W.Resistance analysis on the northern leaf blight and the gray leaf spot of the corn inbred lines.J Maize Sci, 2012, 20(1): 135-137 (in Chinese with English abstract)
[3] 张小利. 玉米应答大斑菌侵染的蛋白质组学与抗南方锈病新基因的挖掘. 中国农业科学院博士学位论文,北京, 2013
Zhang X L.Proteomic Analysis of Maize Infected by Setosphaeria turcica and Discovery of New Resistance Gene to Southern Corn Rust. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract)
[4] Wang X M, Zhang Y H, Xu X D, Li H J, Wu X F, Zhang S H, Li X H.Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases.Crop J, 2014, 2: 213-222
[5] 王晓鸣, 晋齐鸣, 石洁, 王作英, 李晓. 玉米病害发生现状与推广品种抗性对未来病害发展的影响. 植物病理学报, 2006, 36: 1-11
Wang X M, Jin Q M, Shi J, Wang Z Y, Li X.The status of maize diseases and the possible effect of variety resistance occurrence in the future.Acta Phytopathol Sin, 2006, 36: 1-11 (in Chinese with English abstract)
[6] Van Staden D, Lambert C A, Lehmensiek A.SCAR markers for the Ht1, Ht2, Ht3 and Htn1 resistance genes in maize. Maize Genet Conf Abs, 2001, 43: 134
[7] Chung C L, Jamann T, Longfellow J, Nelson R.Characterization and fine-mapping of a resistance locus for northern leaf blight in maize bin 8.06.Theor Appl Genet, 2010, 121: 205-227
[8] Simcox K D, Bennetzen J L.The use of molecular markers to study Setosphaeria turcica resistance in maize.Phytopathology, 1993, 83: 1326-1330
[9] Robbins J W, Warren H.Inheritance of resistance to Exserohilum turcicum in PI 209135, “Mayorbela” variety of maize.Maydica, 1993, 38: 209-213
[10] Ogliari J B, Guimarães M A, Camargo L E A. Chromosomal locations of the maize ( Zea mays L.) HtP and rt genes that confer resistance to Exserohilum turcicum. Genet Mol Biol, 2007, 30: 630-634
[11] Welz H, Geiger H.Genes for resistance to northern corn leaf blight in diverse maize populations.Plant Breed, 2000, 119: 1-14
[12] Martin T, Biruma M, Fridborg I, Okori P, Dixelius C.A highly conserved NB-LRR encoding gene cluster effective against Setosphaeria turcica in sorghum.BMC Plant Biol, 2011, 11: 151
[13] 王玉萍, 王晓鸣, 马青. 我国玉米大斑病菌生理小种组成变异研究. 玉米科学, 2007, 15(2): 123-126
Wang Y P, Wang X M, Ma Q.Races of Exserohihun turcicum, causal agent of northern leaf blight in China. J Maize Sci, 2007, 15(2): 123-126 (in Chinese with English abstract)
[14] 杨继良, 王斌. 玉米大斑病抗性遗传的研究进展. 遗传, 2002, 24: 501-506
Yang J L, Wang B.The research advancement on genetics of resistance to Exserohihun turcicum in maize.Genetics(Beijing), 2002, 24: 501-506 (in Chinese with English abstract)
[15] 赵桂东, 刘荆, 陆化森, 王伟新. 夏玉米大斑病发生规律及影响病害消长因素的研究. 玉米科学, 1995, 3(2): 79-80
Zhao G D, Liu J, Lu H S, Wang W X.Study on the occurrence regularity and the factors affecting the growth and decline of summer northern corn leaf blight.Maize Sci, 1995, 3(2): 79-80 (in Chinese with English abstract)
[16] 赵书文, 杨秀林, 郭东. 玉米大斑病的流行原因与综合治理措施. 中国植保导刊, 2005, 25(3): 10-12
Zhao S W, Yang X L, Guo D.Epidemic causes of Exserochilum turcicum and its integrated management measures. China Plant Prot, 2005, 25(3): 10-12 (in Chinese with English abstract)
[17] Wisser R J, Balint-Kurti P J, Nelson R J. The genetic architecture of disease resistance in maize: a synthesis of published studies.Phytopathology, 2006, 96: 120-129
[18] Ali F, Yan J B.The phenomenon of disease resistance in maize and the role of molecular breeding in defending against global threat.J Int Plant Biol, 2012, 54: 134-151
[19] Parlevliet J E.Durability of resistance gaginst fungal, bacterial and viral pathogens; present situation.Euphytica, 2002, 124: 147-156
[20] Chung C L, Longfellow J, Walsh E K, Kerdieh Z, Esbroeck G V, Balint-Kurti P, Nelson R J.Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize Setosphaeria turcica pathosystem.BMC Plant Biol, 2010, 10: 103
[21] Chung C L, Poland J, Kump K, Benson J, Longfellow J, Walsh E, Balint-Kurti P, Nelson R.Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize.Theor Appl Genet, 2011, 123: 307-326
[22] Ploand J A, Bradbury P J, Buckler E S, Nelson R J.Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA, 2011, 108: 6893-6898
[23] Chen G S, Wang X M, Long S S, Jaqueth J, Li B L, Yan J B, Ding J Q.Mapping of QTL conferring resistance to northern corn leaf blight using high-density SNPs in maize. Mol Breed, 2016, 36: 4
[24] Chung C L, Jamann T, Longfellow J, Nelson R.Characterization and fine-mapping of a resistance locus for northern leaf blight in maize bin 8.06.Theor Appl Genet, 2010, 121: 205-227
[25] Jamann T M, Poland J A, Kolkman J M, Smith L G, Nelson R J.Unraveling genomic complexity at a quantitative disease resistance locus in maize.Genetics, 2014, 198: 333-334
[26] Badu-Apraku B, Gracen V, Bergstrom G.A major gene for resistance to anthracnose stalk rot in maize.Phytopathology, 1987, 77: 957-959
[27] Jung M, Weldekidan T, Schaff D, Paterson A, Tingey S, Hawk J.Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize.Theor Appl Genet, 1994, 89: 413-418
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[4] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[5] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[6] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[7] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[10] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
[11] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
[12] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[13] 李英双,胡丹,聂蛟,黄科慧,张玉珂,张园莉,佘恒志,方小梅,阮仁武,易泽林. 甜荞株高和茎粗的遗传分析[J]. 作物学报, 2018, 44(8): 1185-1195.
[14] 毛彦芝,李春杰,胡岩峰,华萃,尤佳,王鑫鹏,刘喜才,杨耿斌,王从丽. 评价黑龙江省主栽马铃薯品种及重要育种材料对北方根结线虫的抗性[J]. 作物学报, 2017, 43(12): 1864-1869.
[15] 张天雨,周春雷,刘喜,孙爱伶,曹鹏辉,Thanhliem NGUYEN,田云录,翟虎渠,江玲. 一个水稻温敏黄化突变体的表型分析和基因定位[J]. 作物学报, 2017, 43(10): 1426-1433.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!