欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (9): 1388-1397.doi: 10.3724/SP.J.1006.2020.94196

• 耕作栽培·生理生化 • 上一篇    下一篇

棉花脱叶催熟剂对纤维品质的影响及应用时间的确定

田景山(), 张煦怡, 王文敏, 杨延龙, 随龙龙, 张鹏鹏, 张亚黎, 张旺锋*(), 勾玲*()   

  1. 石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832000
  • 收稿日期:2019-12-13 接受日期:2020-04-15 出版日期:2020-09-12 网络出版日期:2020-05-14
  • 通讯作者: 张旺锋,勾玲
  • 作者简介:E-mail: tjshan1983@sina.com
  • 基金资助:
    本研究由国家自然科学基金项目(31560366);引进国际先进农业科学技术计划(948计划)项目(2016-X25);新疆维吾尔自治区研究生教育改革创新计划资助(XJGRI2016030)

A method of defoliant application based on fiber damage and boll growth period of machine-harvested cotton

TIAN Jing-Shan(), ZHANG Xu-Yi, WANG Wen-Min, YANG Yan-Long, SUI Long-Long, ZHANG Peng-Peng, ZHANG Ya-Li, ZHANG Wang-Feng*(), GOU Ling*()   

  1. College of Agronomy, Shihezi University / Key Laboratory of Oasis Eco-Agriculture, the Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
  • Received:2019-12-13 Accepted:2020-04-15 Published:2020-09-12 Published online:2020-05-14
  • Contact: Wang-Feng ZHANG,Ling GOU
  • Supported by:
    National Natural Science Foundation of China(31560366);Program of Introducing International Super Agricultural Science and Technology(2016-X25);Xinjiang Postgraduate Education Reform and Innovation Program(XJGRI2016030)

摘要:

棉花脱叶催熟技术是实现棉花机械采收的重要前提, 确定脱叶催熟剂喷施时期及标准对实现良好的脱叶和催熟效果至关重要。本研究采用分期喷施脱叶催熟剂的方式, 探讨了脱叶催熟剂对纤维品质的损伤程度, 及与棉铃铃期之间的定量关系。结果表明, 脱叶催熟剂对纤维长度的影响在品种间存在差异, 46%~69%的供试品种纤维长度较对照下降或持平, 另有31%~54%的品种纤维长度反而较对照增加, 所有品种纤维长度较对照平均仅降低0.2%~1.2%。纤维比强度受脱叶催熟剂的影响较为明显, 其损伤量(处理与对照的差值)集中分布在-4~0 cN tex-1之间。脱叶催熟剂对纤维比强度的损伤程度与喷施时间有关, 铃龄30 d时喷施损伤大, 铃龄37 d时喷施损伤减小, 且有61%供试品种的比强度较对照平均增加了1.1 cN/tex。脱叶催熟剂对纤维比强度的损伤量随棉铃铃期延长而加剧, 因此可根据“脱叶催熟剂喷施时棉铃的铃龄与铃期的比值(Rd/b)”这一指标确定脱叶催熟剂的喷施时间。此外, 棉铃铃期与棉铃体积、棉铃体积与纤维比强度均呈显著正相关关系。如要生产比强度>31 cN tex-1的棉花纤维, 所选品种的棉铃体积应>31.8 cm3、棉铃铃期应>60.0 d, 且要在Rd/b>0.68 (铃龄40.9 d)后喷施脱叶催熟剂(可控制纤维比强度损伤量小于0.5 cN tex-1)。

关键词: 机采棉, 纤维品质, 脱叶催熟, 铃期, 损伤量

Abstract:

Defoliation technology is an essential prerequisite for machine-harvested cotton, and to apply defoliant to achieve better defoliation and improve fiber quality is an important method. The objective of this study was to analyze the quantitative relationship between fiber damage amount and boll growth period by defoliant. The results showed that defoliant had not significantly an effect on fiber length, which showed that all reduced by from 0.2% to 1.2% compared with the control, 46%-69% cotton varieties decreased or equal, whereas 31%-54% cotton varieties increased in fiber length compared with control. Fiber strength was affected significantly by defoliation, and the amplitude of fiber damage was concentrated between -4 cN tex-1 and 0 cN tex-1. The amount of fiber damage by defoliant was correlated to the spraying time in cotton boll growth, and the high damage at 30 days, whereas the lowest damage at 37 days. More than 61% cotton varieties showed an increased by average 1.1 cN tex-1 on fiber strength compared with the control. Fiber strength damage because of defoliant increased with the increasing boll growth period. It was an indicator for determining the time of spraying defoliation based on the boll growth period and fiber damage (Rd/b) on fiber strength. Furthermore, cotton boll growth period and boll volume. Fiber strength and boll volume, boll volume and boll growth period, both showed significant positive correlation. If fiber strength of more than 31 cN tex-1was produced in field, a cotton cultivar should be selected with boll volume of more than 31.8 cm3, boll growth period of more than 60.0 d and Rd/b more than 0.68. Defoliant used after 40.9 post-anthesis days could ensure fiber strength of less than 0.5 cN tex-1.

Key words: machine-harvested cotton, fiber quality, defoliation, boll growth period, fiber damage

表1

脱叶催熟剂试验种植的棉花品种、播种日期、挂花日期和脱叶催熟剂喷施时间"

年份
Year
试验地点
Experiment plot
‘新陆早’系列品种序号
No. of ‘Xinluzao’ cotton
cultivars
播种日期
Sowing dates
(month/day)
挂花时期
Tagged dates
(month/day)
脱叶催熟剂
喷施时间
Defoliation times (d)
2016 石河子大学农学试验站
Shihezi University Experiment Station
1, 6, 7, 13, 33, 45 4/21 7/20 30, 37
46, 47, 58, 60, 62, 63, 64 4/21 7/20 37, 44
新疆乌兰乌苏农业气象试验站
Wulanwusu Agrometeorological Experiment Station
33 4/15 7/15 30, 37, 44
33 4/15 7/22 30, 37
59 4/8, 4/15, 4/22 7/15, 7/15, 7/22 30, 37, 44
2017 石河子大学农学试验站
Shihezi University Experiment Station
45, 46, 47, 60, 61, 62, 63, 64 4/22 7/12 30, 37
33, 59 4/22 7/12 30, 37, 44

表2

品种试验种植的棉花品种、播种日期、挂花日期和取样时间"

年份
Year
‘新陆早’系列品种序号
No. of ‘Xinluzao’ cotton cultivars
播种日期
Sowing dates
(month/day)
挂花时期
Tagged dates
(month/day)
取样时间
Sampling dates
(d)
2014 1, 2, 5, 7, 10, 13, 24, 36, 45, 52, 53 5/1 7/15 46
2015 1, 2, 5, 7, 10, 24, 36, 52, 53 4/20 7/9 53
2016 1, 6, 7, 13, 33, 45, 46, 47, 58, 60, 62, 63, 64 4/21 7/20 43
2017 45, 46, 47, 60, 61, 62, 63, 64 4/22 7/12 50

图1

脱叶催熟剂喷施时间对棉纤维长度和比强度的影响 脱叶催熟剂喷施时间在铃龄30、37、44 d处理的样本数分别是21、28、13。图中粗实线表示该组数据的平均值。**表示在P < 0.01差异显著。"

图2

脱叶催熟剂喷施时间对棉纤维长度损伤等级的影响 柱状图是不同等级的纤维长度损伤量在试点间的比例分布, 横坐标是不同等级纤维长度的损伤量占全部试点数的百分比(%), 纵坐标是纤维长度损伤量的等级。散点图中的误差线为该组数值的标准偏差。处理同图1。"

图3

脱叶催熟剂喷施时间对棉纤维比强度损伤等级的影响 柱状图是不同等级的纤维比强度损伤量在试点间的比例分布, 横坐标是不同等级纤维比强度的损伤量占全部试点数的百分比(%), 纵坐标是纤维比强度损伤量的等级。散点图中的误差线为该组数值的标准偏差。处理同图1。"

图4

棉纤维长度和比强度的损伤量与对照处理棉铃铃期的关系 处理同图1。"

图5

棉纤维长度和比强度的损伤量与脱叶催熟剂喷施时的棉铃铃龄与铃期的比值(Rd/b)间的定量关系"

图6

棉铃铃期与棉铃直径、长度和体积间的定量关系"

图7

棉纤维长度和比强度与棉铃直径、长度和体积间的定量关系"

图8

棉铃体积与棉铃直径和铃长度的定量关系"

表3

生产30 cN tex-1和31 cN tex-1纤维比强度所需要的铃体积、铃直径、铃长度、铃期和脱叶催熟剂喷施时的棉铃铃龄与铃期的比值(Rd/b)及脱叶催熟剂的喷施时间"

性状
Trait
生产纤维比强度>31 cN tex-1
要求的参数
Values for producing >30 cN tex-1
fiber strength
生产纤维比强度>30 cN tex-1
要求的参数
Values for producing >30 cN tex-1
fiber strength
铃体积Boll volume (cm3) 31.8 28.7
铃长度Boll length (mm) 49.7 47.4
铃直径Boll diameter (mm) 36.6 35.6
铃期Boll growth period (d) 60.0 56.8
比强度损伤
Fiber strength damage amount < 0.5 cN tex-1
脱叶催熟剂喷施时的棉铃铃龄与铃期的比值(Rd/b)
Ratio divided defoliation time by boll growth period (d/b)
0.68 0.68
脱叶催熟剂喷施时间
Defoliant application time (d)
40.9 38.7
比强度损伤
Fiber strength damage amount <
0 cN tex-1
脱叶催熟剂喷施时的棉铃铃龄与铃期的比值(Rd/b)
Ratio divided defoliation time by boll growth period (d/b)
0.72 0.68
脱叶催熟剂喷施时间
Defoliant application time (d)
43.3 41.0
[1] Brar Z R, Sekhon K S, Deol J S. Effect of defoliants on growth and yield of timely and late sown cotton (Gossypium hirustum L.). J Cotton Res Dev, 1995,9:227-230.
[2] Gormus O, Kurt F, Sabagh A E L. Impact of defoliation timings and leaf pubescence on yield and fiber quality of cotton. J Agric Sci Technol, 2017,19:903-915.
[3] Snipes C E, Baskin C C. Influence of early defoliation on cotton yield, seed quality, and fiber properties. Field Crops Res, 1994,37:137-143.
[4] Bednarz C W, Shurley W D, Anthony W S. Losses in yield, quality, and profitability of cotton from improper harvest timing. Agron J, 2002,94:1004-1011.
[5] Faircloth J C, Edmisten K L, Wells R, Stewart A M. The influence of defoliation timing on yields and quality of two cotton cultivars. Crop Sci, 2004,44:165-172.
[6] Banger M P, Long R T, Constable G A, Gordon S G. Minimizing immature fiber and neps in upland cotton. Agron J, 2010,102:781-789.
[7] Faircloth J C, Edmisten K L, Wells R, Stewart A M. Timing defoliation applications for maximum yield and optimum quality in cotton containing a fruiting gap. Crop Sci, 2004,44:158-164.
[8] Cathey G W, Luckett K E, Rayburn Jr S T. Accelerated cotton boll dehiscence with growth regulator and desiccant chemicals. Field Crops Res, 1982,5:113-120.
[9] Banger M P, Long R T. Optimizing timing of chemical harvest aid application in cotton by predicting its influence on fiber quality. Agron J, 2011,103:390-395.
[10] Larson J A, Gwathmey C O, Hayes R M. Cotton defoliation and harvest timing effects on yields, quality, and net revenues. J Cotton Sci, 2002,6:13-27.
[11] 王林, 赵冰梅, 丁志欣, 刘晨, 高海明, 张强, 张虎, 李峰, 蒋智超, 雷振华. 机采棉脱叶剂喷施技术规范. 新疆维吾尔自治区地方标准, DB65T 3980-2017, 2017. 03. 20.
Wang L, Zhao B M, Ding Z X, Liu C, Gao H M, Zhang Q, Zhang H, Li F, Jiang Z C, Lei Z H. Technical specification of spraying defoliant mechanical harvesting of cotton field. Xinjiang Uygur Autonomous Region Standard, DB65T 3980-2017, 2017. 3. 20 (in Chinese).
[12] 过兴先, 曾伟. 新疆棉区的气温和棉铃发育关系的研究. 作物学报, 1989,15:202-212.
Guo X X, Zeng W. A study on relationship between temperature and cotton boll development in Xinjiang. Acta Agron Sin, 1989,15:202-212 (in Chinese with English abstract).
[13] Brown L C, Hyer A H. Chemical defoliation of cotton: V. Effects of premature defoliant and desiccant treatments on boll components, fiber properties, germination, and yield of cotton. Agron J, 1956,48:50-55.
[14] Long R L, Bange M P. Consequences of immature fiber on the processing performance of upland cotton. Field Crops Res, 2011,121:401-407.
[15] Miller D, Stephenson D, Fromme D. Cotton harvest aid guidelines for Louisiana, LA: the LSU AgCenter, 2014 [2014-09-14]. https://www.lsuagcenter.com/topics/crops/cotton/agronomy
[16] 曹新川, 胡守林, 韩秀锋, 何良荣, 郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系. 作物学报, 2020,46:300-306
Cao X C, Hu S L, Han X F, He L R, Guo W F. Relationship of stage development of cotton bolls with yield and quality in island cotton. Acta Agron Sin, 2020,46:300-306 (in Chinese with English abstract).
[17] 陈源, 王永慧, 杨朝华, 肖健, 栾娜, 张祥, 陈德华. 氮肥运筹对高品质棉棉铃形成及纤维品质的影响. 作物学报, 2009,35:2266-2272.
Chen Y, Wang Y H, Yang Z H, Xiao J, Luan N, Zhang X, Chen D H. Effect of nitrogen fertilizer application on development of boll and fiber quality in high fiber quality cotton. Acta Agron Sin, 2009,35:2266-2272 (in Chinese with English abstract).
[18] 陈源, 王永慧, 肖健, 栾娜, 张祥, 陈德华. 高品质陆地棉棉铃发育特点. 作物学报, 2010,36:1371-1376.
Chen Y, Wang Y H, Xiao J, Luan N, Zhang X, Chen D H. Boll development characteristics for high-quality upland cotton cultivars. Acta Agron Sin, 2010,36:1371-1376 (in Chinese with English abstract).
[19] 由宝昌, 刘键萍, 梅拥军, 董安春, 孔向东. 海岛棉铃形与铃重纤维品质关系的研究. 西北农业学报, 1995,2(1):27-33.
You B C, Liu J P, Mei Y J, Dong A C, Kong X D. A study of the relations between boll form and boll weight and fibre quality of sea-island cotton. Acta Agric Boreali-Occident Sin, 1993,2(1):27-33 (in Chinese with English abstract).
[20] 李雪源. 新疆棉花生产中的几个热门项目. 中国棉花, 1995,23(9):38-39.
Li X Y. Several high-demand events of cotton production in Xinjiang. China Cotton, 1995,23(9):38-39 (in Chinese).
[21] 李蒙春, 洪启华, 苏守智, 李生军. 新疆机采棉的研究及应用. 新疆农垦经济, 2001, (5):32-33.
Li M C, Hong Q H, Su S Z, Li S J. Research and application of machine—harvested cotton in Xinjiang. Xinjiang State Farm Econ, 2001, (5):32-33 (in Chinese).
[22] 李雪源, 王俊铎, 梁亚军, 郑巨云, 龚照龙, 艾先涛, 莫明. 新疆棉花质量效益规模分析与发展适度规模下的质量效益型棉业. 中国棉麻产业经济研究, 2016, (6):26-40.
Li X Y, Wang J D, Liang Y J, Zheng J Y, Gong Z L, Ai X T, Mo M. Analysis of quality and benefit of cotton in Xinjiang and Quality-efficient cotton industry under moderate development. Chin Cotton Linen Ind Econ Res J, 2016, (6):26-40 (in Chinese).
[23] Stewart J M. Fiber initiation on the cotton ovule (Gossypium hirsutum). Am J Bot, 1975,62:723-730.
[24] Jasdanwala R T, Sing Y D, Chinoy J J. Auxin metabolism in developing cotton hairs. J Exp Bot, 1977,28:1111-1116.
[25] 沈岳清, 方炳初, 盛敏智. 乙烯利对棉叶光合能力和物质运输等方面的影响. 植物学报, 1980,22:136-140.
Shen Y Q, Fang B C, Sheng M Z. The effect of photosynthesis and translocation in cotton leaf. Acta Bot Sin, 1980,22:136-140 (in Chinese with English abstract).
[26] Wardlaw I F. The control of carbon partitioning in plants. New Phytol, 1990,116:341-381.
[27] 段留生, 何钟佩. 源库关系改变对棉叶内源激素的影响. 西北植物学报, 1999,19(6):116-121.
Duan L S, He Z P. Effect of alteration of source-sink relationship on endogenous hormones in cotton leaves. Acta Bot Boreali-Occident Sin, 1999,19(6):116-121 (in Chinese with English abstract).
[28] 刘刚. 目前登记的棉花脱叶剂产品. 农药市场信息, 2017, (25):34.
Liu G. Cotton defoliant products registered. Pestic Mark News, 2017, (25):34 (in Chinese).
[29] Snipes C E, Cathey G W. Evaluation of defoliant mixtures in cotton. Field Crops Res, 1992,28:327-334.
[30] 田晓莉, 段留生, 李召虎, 王保民, 何钟佩. 棉花化学催熟与脱叶的生理基础. 植物生理学通讯, 2004,40:758-762.
Tian X L, Duan L S, Li Z H, Wang B M, He Z P. Physiological bases of chemical accelerated boll maturation and defoliation in cotton. Plant Physiol J, 2004,40:758-762 (in Chinese with English abstract).
[31] Snipes C E, Wills G D. Influence of temperature and adjuvants on thidiazuron activity in cotton leaves. Weed Sci, 1994,42:13-17.
[32] 田景山, 张煦怡, 张丽娜, 徐守振, 祁炳琴, 随龙龙, 张鹏鹏, 杨延龙, 张旺锋, 勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件. 作物学报, 2019,45:613-620.
Tian J S, Zhang X Y, Zhang L N, Xu S Z, Qi B Q, Sui L L, Zhang P P, Yang Y L, Zhang W F, Gou L. Temperatures of promoting rapid leaf abscission of cotton in Xinjiang region. Acta Agron Sin, 2019,45:613-620 (in Chinese with English abstract).
[33] 高丽丽, 李淦, 康正华, 李健伟, 王蜜蜂, 马云珍, 张巨松. 脱叶剂对棉花抗氧化酶及内源激素的影响. 农药学学报, 2016,18:439-446.
Gao L L, Li G, Kang Z H, Li J W, Wang M F, Ma Y Z, Zhang J S. Effect of defoliants on antioxidative enzyme activity and endogenous hormone contents of cotton. Chin J Pestic Sci, 2016,18:439-446 (in Chinese with English abstract).
[34] Xu J, Chen L, Sun H, Wusiman N, Sun W N, Li B Q, Gao Y, Kong J, Zhang D W, Zhang X L, Xu H J, Yang X Y. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J Exp Bot, 2019,70:1525-1538.
pmid: 30715415
[35] Mishra A, Khare S, Trivedi P K, Nath P. Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. South Afr J Bot, 2008,74:282-287.
doi: 10.1016/j.sajb.2007.12.001
[36] Mishra A, Khare S, Trivedi P K, Nath P. Ethylene induced cotton leaf abscission is associated with higher expression of cellulase (GhCel1) and increased activities of ethylene biosynthesis enzymes in abscission zone. Plant Physiol Biochem, 2008,46:54-63.
pmid: 17964177
[37] 高丽丽, 李淦, 康正华, 李健伟, 王蜜蜂, 马云珍, 张巨松. 脱叶剂对棉花叶片叶绿素荧光动力学参数的影响. 棉花学报, 2016,28:345-352.
doi: 10.11963/issn.1002-7807.201604005
Gao L L, Li G, Kang Z H, Li J W, Wang M F, Ma Y Z, Zhang J S. Effect of defoliants on chlorophyll fluorescence of cotton leaves. Cotton Sci, 2016,28:345-352 (in Chinese with English abstract).
[38] Meinert M C, Delmer D P. Change in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol, 1977,59:1088-1097.
doi: 10.1104/pp.59.6.1088 pmid: 16660000
[39] Tokumoto H, Wakabayashi K, Kamisaka S, Hoson T. Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development. Plant Cell Physiol, 2002,43:411-418.
doi: 10.1093/pcp/pcf048 pmid: 11978869
[40] Gokani S J, Thaker V S. Physiological and biochemical changes associated with cotton fiber development: IX. Role of IAA and PAA. Field Crops Res, 2002,77:127-136.
[41] Lipe J A, Morgan P W. Ethylene: role in fruit abscission and dehiscence processes. Plant Physiol, 1972,50:759-764.
[42] Chen Y, Cothren J T, Chen D H, Ibrahim A M H, Lombardini L. Effect of 1-MCP on boll development and subtending leaves of cotton (Gossypium hirsutum L.) plants. Am J Plant Sci, 2014,5:3345-3353.
[43] Tang F Y, Xiao W J. Genetic association of within‐boll yield components and boll morphological traits with fibre properties in upland cotton. Plant Breed, 2014,133:521-529.
[44] 狄佳春, 肖松华, 刘剑光, 许乃银, 陈旭升. 不同铃形的陆地棉棉铃性状研究. 中国棉花, 2002,29(5):12-14.
Di J C, Xiao S H, Liu J G, Xu N Y, Chen X S. Different boll shapes affected boll traits of upland cotton. China Cotton, 2002,29(5):12-14 (in Chinese).
[45] 李雪源. 把吐絮快而集中作为新疆棉花育种的一项重要指标. 新疆农业科学, 1993, (4):179-180.
Li X Y. Quickness and concentration were an important indicator of cotton breeding in Xinjiang. Xinjiang Agric Sci, 1993, (4):179-180 (in Chinese with English abstract).
[46] 李雪源. 机采棉育种机采性状选择效果初报. 中国棉花, 1997,24(9):14-15.
Li X Y. Preliminary report on cotton breeding of machine- harvested cotton. China Cotton, 1997,24(9):14-15 (in Chinese).
[47] Craig C. W075—Cotton defoliation timing. TN: The University of Tennessee Agriculture Extension Service, 2010. http://trace. tennessee.edu/utk_agexcrop/88.
[48] Wright D L, Marois J J, Sprenkel R K. Production of ultra-narrow row cotton. University of Florida UF/ IFAS Extension, 2000. pp 1-3.
[49] Logan J, Gwathmey O. Effects of weather on cotton responses to harvest-aid chemicals. J Cotton Sci, 2002,6:1-12.
[1] 尔晨, 林涛, 夏文, 张昊, 徐高羽, 汤秋香. 灌溉定额和施氮量对机采棉田水分运移及硝态氮残留的影响[J]. 作物学报, 2022, 48(2): 497-510.
[2] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[3] 田景山,张煦怡,张丽娜,徐守振,祁炳琴,随龙龙,张鹏鹏,杨延龙,张旺锋,勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件[J]. 作物学报, 2019, 45(4): 613-620.
[4] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[5] 沈超,李定国,聂以春,林忠旭. 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL[J]. 作物学报, 2017, 43(12): 1733-1745.
[6] 杨长琴,刘瑞显,张国伟,杨富强,周治国. 花铃期渍水对棉纤维糖代谢的影响及其与纤维比强度的关系[J]. 作物学报, 2014, 40(09): 1612-1618.
[7] 许乃银,李健. 利用GGE双标图划分长江流域棉花纤维品质生态区[J]. 作物学报, 2014, 40(05): 891-898.
[8] 杨长琴,刘瑞显,张国伟,徐立华,周治国. 花铃期渍水对棉铃对位叶蔗糖代谢及铃重的影响[J]. 作物学报, 2014, 40(05): 908-914.
[9] 孙啸震,张黎妮,戴艳娇,贺新颖,周治国,王友华. 花铃期增温对棉花干物重累积的影响及其生理机制[J]. 作物学报, 2012, 38(04): 683-690.
[10] 于莎, 王友华, 周治国, 吕丰娟, 刘敬然, 马伊娜, 陈吉. 花铃期遮阴对棉花氮素代谢的影响及其机制研究[J]. 作物学报, 2011, 37(10): 1879-1887.
[11] 李学刚, 宋宪亮, 孙学振, 陈二影, 张美玲, 赵庆龙. 控释氮肥对棉花纤维品质、产量与氮肥利用效率的影响[J]. 作物学报, 2011, 37(10): 1910-1915.
[12] 张祥, 刘晓飞, 吕春花, 董召娣, 陈源, 陈德华. 两个不同类型彩色棉品种纤维发育的生理特征[J]. 作物学报, 2011, 37(03): 489-495.
[13] 赵新华, 束红梅, 王友华, 陈兵林, 周治国. 播期对棉铃生物量和氮累积与分配的影响及其与棉铃品质的关系[J]. 作物学报, 2010, 36(10): 1707-1714.
[14] 张美玲,宋宪亮,孙学振,陈二影,赵庆龙,李宗泰. 彩色棉纤维发育过程中超分子结构变化与纤维品质的关系[J]. 作物学报, 2010, 36(08): 1386-1392.
[15] 孔广超,秦利,徐海明,祝水金. 棉花IF2群体构建及其在纤维品质遗传和杂种优势研究中的应用[J]. 作物学报, 2010, 36(06): 940-944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!