作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1612-1618.doi: 10.3724/SP.J.1006.2014.01612
杨长琴1,2,刘瑞显2,张国伟2,杨富强2,周治国1,*
YANG Chang-Qin1,2,LIU Rui-Xian2,ZHANG Guo-Wei2,YANG Fu-Qiang2,ZHOU Zhi-Guo1,*
摘要:
以美棉33B为材料,2007和2009年在江苏南京池栽条件下设置渍水试验,研究花铃期渍水对棉纤维糖代谢的影响及其与纤维比强度的关系。结果表明,渍水条件下花后17~38 d纤维蔗糖和β-1,3-葡聚糖含量均值分别降低24.86%~81.30%和8.59%~36.30%,纤维素最大累积速率在受渍害较轻条件下增加而受渍害较重条件下降低,但快速持续期缩短,成熟期纤维素含量降低,比强度下降3.57%~10.03%。受渍害较轻条件下,花后17~38 d纤维蔗糖合酶(SS)和蔗糖磷酸合酶(SPS)活性均值分别增加8.45%~24.59%和12.79%~18.20%,生成碳源用于维持生存代谢,而受渍害较重条件下分别降低7.06%~8.16%和11.40%~11.64%;蔗糖酶和β-1,3-葡聚糖酶活性在花后17 d后降低。因此,渍水条件下纤维加厚发育期碳源供应不足、碳代谢消耗增加或代谢被抑制是最终比强度下降的重要原因。
[1]Reddy K R, Davidonis G H, Johnson A S, Vinyard B T. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron J, 1999, 91: 851–858[2]刘瑞显, 郭文琦, 陈兵林, 周治国, 孟亚利. 氮素对花铃期干旱再复水后棉花纤维比强度形成的影响. 植物营养与肥料学报, 2009, 15: 662–669Liu R X, Guo W Q, Chen B L, Zhou Z G, Meng Y L. Effects of nitrogen on cotton fiber strength formation under water stress and rewatering during the flowering and boll-forming stage. Plant Nutr Fert Sci, 2009, 15: 662–669 (in Chinese with English abstract)[3]刘继华, 尹承佾, 于凤英, 孙清荣, 王永民, 贾景农, 边栋材, 陈学留. 棉花纤维强度的形成机理与改良途径. 中国农业科学, 1994, 27(5): 10–16Liu J H, Yin C Y, Yu F Y, Sun Q R, Wang Y M, Jia J N, Bian D C, Chen X L. Formation mechanism and improvement approach of cotton (Gossypium) fiber strength. Sci Agric Sin, 1994, 27(5): 10–16 (in Chinese with English abstract)[4]束红梅, 王友华, 陈兵林, 胡宏标, 张文静, 周治国. 棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系. 作物学报, 2007, 33: 921–926Shu H M, Wang Y H, Chen B L, Hu H B, Zhang W J, Zhou Z G. Genotypic differences in cellulose accumulation of cotton fiber and its relationship with fiber strength. Acta Agron Sin, 2007, 33: 921–926 (in Chinese with English abstract)[5]Doblin M S, Kurek I, Jacok W D. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol, 2002, 43: 1407–1420[6]Shu H M, Wang Y H, Zhang W J, Zhou Z G. Activity changes of enzymes associated with fiber development and relationship with fiber specific strength in two cotton cultivars. Acta Agron Sin, 2008, 34: 437–446[7]胡宏标, 张文静, 王友华, 陈兵林, 周治国. 棉纤维加厚发育相关物质对纤维比强度的影响. 西北植物学报, 2007, 27: 726–733Hu H B, Zhang W J, Wang Y H, Chen B L, Zhou Z G. Matters related with cotton fiber thickening development and fiber strength. Acta Bot Bor-Occid Sin, 2007, 27: 726–733 (in Chinese with English abstract)[8]Haigler C H, Milka I D, Hogan P S, Salnkov V V, Hwang S, Martin K, DelMer D P. Carbon partitioning to cellulose synthesis. Plant Mol Biol, 2001, 47: 29–51[9]Michelle B V, Haigler C H. Sucrose-phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. Plant Physiol, 2001, 127: 1234–1242[10]Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol, 2004, 7: 235–246.[11]Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol, 1997, 38: 375–378.[12]Shu H M, Zhou Z G, Xu N Y, Wang Y H, Zheng M. Sucrose metabolism in cotton (Gossypium hirsutum L.) fiber under low temperature during fiber development. Eur J Agron, 2009, 31: 61–68[13]冯营, 赵新华, 王友华, 马溶慧, 周治国. 棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系. 中国农业科学, 2009, 42: 93–102Feng Y, Zhao X H, Wang Y H, Ma R H, Zhou Z G. Responses of carbohydrate metabolism to nitrogen in cotton fiber development and its relationships with fiber strength formation. Sci Agric Sin, 2009, 42: 93–102 (in Chinese with English abstract)[14]马溶慧, 许乃银, 张传喜, 李文峰, 冯营, 屈磊, 王友华, 周治国. 氮素调控棉花纤维蔗糖代谢及纤维比强度的生理机制. 作物学报, 2008, 34: 2143–2151Ma R H, Xu N Y, Zhang C X, Li W F, Feng Y, Qu L, Wang Y H, Zhou Z G. Physiological mechanism of sucrose metabolism in cotton fiber and fiber strength regulated by nitrogen. Acta Agron Sin, 2008, 34: 2143–2151 (in Chinese with English abstract)[15]汤章城主编. 现代植物生理学实验指南. 北京: 科学出版社, 1999. pp 126–128Tang Z C ed. Modern Laboratory Manual of Plant Physiology. Beijing: Science Press, 1999. pp 126–128 (in Chinese)[16]Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H. Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol, 1985, 77: 544–551[17]Updegraff D M. Semimicro determination of cellulose in biological materials. Anal Biochem, 1969, 32: 420-424[18]Konishi L, Nakai T, Sakai F Hayashi T. Formation of callose from sucrose in cotton fiber microsomal membranes. Jpn Wood Res Soc, 2001, 47: 331–335[19]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Sci, 2001, 41: 1108–1113[20]Hook D D, Brown C L. Root adaptations and relative flood tolerance of five hardwood species. Forensic Sci, 1973, 19: 225–229[21]Wäfler U and Meier H. Enzyme activities in developing cotton fibers. Plant Physiol Bioch, 1994, 32: 697–702[22]Sairam R K, Dharmar K, Chinnusamy V, Meena R C. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mungbean (Vignaradiata). J Plant Physiol, 2009, 166: 602–616[23]Kumutha D, Sairam R K, Ezhilmathi K, Chinnusamy V, Meena R C. Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Sci, 2008, 175: 706–716[24]Springer B, Werr W, Starlinger P, Bennett D C, Zokolica M, Freeling M. The shrunken gene on chromosome 9 of Zea mays L. is expressed in various plant tissues and encodes an anaerobic protein. Mol Gen Genet, 1986, 205: 46l–468[25]Haigler C H. Substrate supply for cellulose synthesis and its stress sensitivity in the cotton fiber. In: Brown R M Jr, Saxena I, eds. Cellulose: Molecular and Structural Biology, Springer: New York, 2007. pp 147–168[26]施美芬, 曾波, 申建红, 类淑桐, 朱智, 刘建辉. 植物水淹适应与碳水化合物的相关性. 植物生态学报, 2010, 34: 855–866Shi M Fen, Zeng B, Shen J H, Lei S T, Zhu Z, Liu J H. A review of the correlation of flooding adaptability and carbohydrates in plants. Chin J Plant Ecol, 2010, 34: 855–866 (in Chinese with English abstract) |
[1] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[4] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[5] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[6] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[7] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[8] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[9] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[10] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[11] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[12] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[13] | 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437. |
[14] | 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521. |
[15] | 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120. |
|