欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2137-2154.doi: 10.3724/SP.J.1006.2022.11105

• 综述 •    下一篇

品种选育与评价的原理和方法评述

严威凯*()   

  1. 加拿大农业与农业食品部渥太华研发中心, 加拿大安大略省K1A 0C6
  • 收稿日期:2021-11-18 接受日期:2022-03-21 出版日期:2022-09-12 网络出版日期:2022-03-28
  • 通讯作者: 严威凯
  • 基金资助:
    本研究部分由ASP-001支持

A critical review on the principles and procedures for cultivar development and evaluation

YAN Weikai*()   

  1. Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Ontario, Canada
  • Received:2021-11-18 Accepted:2022-03-21 Published:2022-09-12 Published online:2022-03-28
  • Contact: YAN Weikai
  • Supported by:
    The work was partially supported by ASP-001

摘要:

植物育种对于满足人们日益增长的对衣食住行的需求并适应不断变化的气候条件起着不可或缺的作用。育种过程包括制定育种目标、创建育种群体、选择优良品系三大环节。研究者围绕提高育种效率, 特别是选择效率提出了许多概念和方法, 比如各种应对基因型-环境互作的策略, 各种稳定性分析方法, 各种品种生态区划分方法, 各种试验设计和分析方法, 各种双标图分析方法, 以及各种多性状综合评价方法等等。另外, 全基因组预测已经发展成为育种工作者必须考虑和不能忽视的方法。了解这些概念、方法之间的关系, 哪些是有用的, 哪些是不必要的, 哪些是有问题的, 它们在整个育种体系中处于什么位置, 对提高育种效率具有实际意义。本文以个人长期的研究、思考和育种实践为基础, 对育种目标制定、育种群体创建, 特别是后代选择的基本原理、概念和方法进行了梳理、澄清和补充, 以期对品种选育和评价的理论和方法形成一个较完整、系统的论述, 并用实例演示一些重要的分析方法。

关键词: 育种家公式, 遗传力, 基因型-环境互作, 品种生态区, 充分试验, 稳定性分析, 选择指数, 全基因组选择

Abstract:

Plant breeding plays an indispensable role in meeting the increasing need for food and comfort of the mankind in a changing climate. Numerous concepts and procedures aiming at improving breeding efficiency have been put forward, such as various strategies for dealing with genotype by environment interaction, stability analyses, mega-environment analyses, experimental designs and analyses, biplot analyses, and selection indices. In addition, genomic selection has evolved into a stage that plant breeders must consider and cannot ignore. It is of practical importance to understand the relationships among these concepts and procedures, their usefulness, drawbacks, and pitfalls, as well as their place in the theoretical framework of plant breeding and genotype evaluation. Based primarily on personal research and experience, this article attempted to develop a systematic narrative on the principles, key concepts, and analytic procedures related to cultivar development and evaluation, with demonstrations using real-world data.

Key words: Breeder’s equation, heritability, genotype-by-environment interaction, mega-environment analysis, adequate testing, stability analysis, index selection, genomic selection

图1

正态分布下的后代选择方程"

表1

正态分布下由群体大小(n)来确定最小误选概率(α)和最大选择强度(i)"

n α i = z
10000 0.0001 3.71
1000 0.001 3.00
100 0.01 2.33
50 0.02 2.05

表2

不同遗传力(h2)下所允许的选择强度(ih)、淘汰率(1-α)、误选率(α)、必须保留的个体数目(N)及选择成功率(1/N)(设n = 10,000, i = 3.7)"

h2 h ih = 3.7h 1-α α N 1/N
0.0 0.00 0.00 0.5000 0.5000 5000 1/5000
0.1 0.32 1.17 0.8790 0.1210 1210 1/1210
0.2 0.45 1.65 0.9505 0.0495 495 1/495
0.3 0.55 2.03 0.9788 0.0212 212 1/212
0.4 0.63 2.34 0.9904 0.0096 96 1/96
0.5 0.71 2.62 0.9959 0.0041 41 1/41
0.6 0.77 2.87 0.9980 0.0020 21 1/21
0.7 0.84 3.10 0.9990 0.0010 10 1/10
0.8 0.89 3.31 0.9995 0.0005 5 1/5
0.9 0.95 3.51 0.9998 0.0002 2 1/2
1.0 1.00 3.70 0.9999 0.0001 1 1

表3

渥太华燕麦育种程序中各选择阶段的选择(淘汰)强度"

育种周期的不同阶段
Stages in a breeding cycle
试点数
No. of
locations
(l)
重复数
No. of
replicates
(r)
选前群体大小
Population size
before selection
(n)
选后群体大小
Population size
after selection
(N)
对应遗传力
Assumed accumulative
heritability
(Hrly)
1 亲本选择和杂交
Parent selection and hybridization
2 温室加代
Generation advance
10000 10000
3.1 第1年目测选择
Visual selection - yr1 (Observational hills)
1 1 10000 1200 0.1
3.2 第2年目测选择
Visual selection - yr2 (Observational plots)
1 1 1200 250 0.3
4.1 第1年预备试验
Preliminary test - yr1 (“Home test”)
4 2 250 60 0.5
4.2 第2年预备试验
Preliminary test - yr2 (“ENCORE”)
8-10 2-3 60 20 0.6
4.3 第1年注册试验
Registration test - yr1
8-10 3 20 10 0.7
4.4 第2年注册试验
Registration test - yr2
8-10 3 10 5 0.8
4.5 第3年注册试验
Registration test - yr3
8-10 3 5 2 0.9

图2

显示魁北克2013-2019年燕麦试验中产量结果的GGE双标图 图中118个品系用蓝色“+”代表; 63个试验(地点-年份组合)用红字标出。每个试验标示为地点缩写加年份的后两位数字。紧跟地点缩写后面的数字表示其所属农业生态区。如CAUS3_13表示在CAUS这个地点在2013年的试验, 而CAUS (Causapscal)属于第三农业生态区。"

图3

显示魁北克2个燕麦生态区的GGE+GGL双标图 图上方的品种生态区包括来自第二、三农业生态区的6个试验点(NORM3, HEBE3, CAUS3, PRIN2, STET3, STAU2), 图下方的品种生态区包括来自第1、3生态区的3个试验点及渥太华(NDHY1, STHU1, LAPO3, OTT)。2个品种生态区偶有交叉。"

图4

显示魁北克2个燕麦生态区的LG双标图 基于2013-2019年魁北克省燕麦试验的产量数据。"

图5

显示13个燕麦品种在魁北克2个燕麦生态区内平均产量和稳定性的GGE双标图 a) ME2a亚区; b) ME2b亚区。数据来自2013-2019魁北克省燕麦区域试验。"

表4

按魁北克燕麦试验的产量数据所估算的最适试验年数(ymin)"

年份跨度
Three-year span
共同品系数
No. of common genotypes
σC σCY σCLY σP H ymin
2013-2015 26 0.63 0.25 0.50 0.71 0.88 1.2
2014-2016 23 0.70 0.34 0.58 0.81 0.86 1.5
2015-2017 27 0.48 0.53 0.73 0.65 0.73 3.3
2016-2018 27 0.30 0.64 0.80 0.52 0.59 6.3
2017-2019 27 0.52 0.49 0.70 0.68 0.76 2.8
2019-2020 30 0.29 0.42 0.64 0.43 0.68 4.3
平均 Mean 3.2

表5

魁北克省燕麦实际试验点数与按产量数据估算的最少(适)试验点数"

年份
Year
参试品种数
No. of entries
实际试验点数
Actual no. of test locations
σG σGL 最适试验点数
Estimated minimum (optimum)
no. of test locations
2013 41 8.0 91,043 339,803 11.2
2014 46 9.0 108,230 246,673 6.8
2015 44 10.0 124,695 281,369 6.8
2016 42 9.9 86,231 170,524 5.9
2017 43 10.0 129,192 354,402 8.2
2018 44 10.0 46,273 114,468 7.4
2019 46 10.0 61,079 255,019 12.5
平均Mean 9.6 8.4

图6

显示在魁北克2个燕麦生态区内各环境中最高产品种的GGE双标图 a) ME2a亚区; b) ME2b亚区。数据来自2013-2019魁北克省燕麦区域试验。"

图7

多元回归校正区组内田间变异趋势 数据来源: 一个燕麦品比试验中的冠锈病数据, 渥太华, 2021。"

表6

13个燕麦品种的8个性状值及其GYT指数(2013-2019)"

品种
Genotype
性状、权重及符号 Traits and their weight and sign
产量
Yield
(kg hm-2)
β-葡聚糖
β-glucan
(%)
麦仁率
Groat
(%)
油分
Oil
(%)
蛋白质
Protein
(%)
容重
Test weight
(kg hL-1)
千粒重
1000-kernel
weight (g)
倒伏
Lodging
(0-9)
GYT指数
GYT
index
1 1 -1 1 1 1 -1
Nicolas 5948 4.3 73.9 6.1 13.2 53.4 35.8 2.9 1.3
Akina 5853 4.8 72.7 7.1 13.4 52.3 38.0 2.4 1.2
Kara 5680 4.7 71.9 8.0 14.0 54.0 38.1 2.0 0.9
Richmond 5631 3.8 71.7 5.4 12.6 55.1 39.2 3.0 0.5
Canmore 5447 4.6 71.6 7.6 14.2 54.9 39.5 3.3 0.3
Nice 5559 4.4 72.6 8.4 13.5 53.3 38.5 3.9 0.1
Orrin 5468 4.4 71.1 6.9 13.3 54.2 38.5 3.5 0.1
Adele 5354 4.6 75.3 8.4 12.8 54.0 38.7 4.5 -0.3
Dieter 5183 4.1 73.4 5.7 14.0 54.3 38.9 3.6 -0.4
Synextra 5171 4.3 72.0 7.3 14.9 56.0 37.3 3.7 -0.4
Vitality 5049 4.0 75.7 7.9 13.6 53.9 40.3 3.9 -0.9
Hidalgo 5158 4.7 74.3 8.0 13.1 53.1 34.5 4.0 -0.9
Avatar 5060 3.9 74.8 7.9 12.2 56.6 36.2 4.9 -1.3

图8

显示13个燕麦品种综合排名及性状构成的GYT双标图(2013-2019) 品种用蓝字标出, 产量-性状结合用红字标出。红色箭头指向较高的GYT指数, 蓝色箭头指向各品种的优势或劣势性状。"

[1] 赵洪璋. 小麦杂交育种工作的若干问题. 甘肃农业科技, 1982, (8): 1-3.
Zhao H Z. Several issues in wheat hybridization breeding. Gangsu Agric Sci Technol, 1982, (8): 1-3. (in Chinese)
[2] 赵洪璋. 小麦杂交育种的基本理论和三大问题. 甘肃农业科技, 1991, (2): 4-5.
Zhao H Z. Basic theories and three major issues in wheat hybridization breeding. Gangsu Agric Sci Technol, 1991, (2): 4-5 (in Chinese)
[3] 赵洪璋, 张海锋, 宋哲民. 小麦杂交育种工作中的若干问题. 陕西农业科学, 1981, (3): 1-8.
Zhao H J, Zhang H F, Song Z M. Some issues in wheat hybridization breeding. Shaanxi Agric Sci, 1981, (3): 1-8 (in Chinese)
[4] Yan W, Tinker N A, Bekele W A, Mitchell-Fetch J, Frégeau-Reid J. Theoretical unification and practical integration of conventional methods and genomic selection in plant breeding. Crop Breed Genet Genomic, 2019, 1: e190003. https://doi.org/10.20900/cbgg20190003.
[5] Yan W. A systematic narration of some key concepts and procedures in plant breeding. Front Plant Sci, 2021, 12: 1863.
[6] Duvick D N. Plant breeding, an evolutionary concept. Crop Sci, 1996, 36: 539-548.
doi: 10.2135/cropsci1996.0011183X003600030001x
[7] Rasmusson D C, Phillips R L. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci, 1997, 37: 303-310.
doi: 10.2135/cropsci1997.0011183X003700020001x
[8] 李振声. 小麦远缘杂交新品种——小偃6号. 山西农业科学, 1986, (5): 30.
Li Z S. New wheat cultivar from wide cross: Xiaoyan 6. Shanxi Agric Sci, 1986, (5): 30. (in Chinese)
[9] Arrones A, Vilanova S, Plazas M, Mangino G, Pascual L, Díez M J, Prohens J, Gramazio P. The dawn of the age of multi-parent MAGIC populations in plant breeding: novel powerful next- generation resources for genetic analysis and selection of recombinant elite material. Biology, 2020, 9: 229.
doi: 10.3390/biology9080229
[10] Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement. Crop Sci, 2009, 49: 1-12.
doi: 10.2135/cropsci2008.08.0512
[11] Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genom, 2010, 9: 166-177.
doi: 10.1093/bfgp/elq001
[12] Heslot N, Jannink J L, Sorrells M E. Perspectives for genomic selection applications and research in plants. Crop Sci, 2015, 55: 1-12.
doi: 10.2135/cropsci2014.03.0249
[13] Osthushenrich T, Frisch M, Zenke-Philippi C, Jaiser H, Spiller M, Cselényi L, Krumnacker K, Boxberger S, Kopahnke D, Habekuß A, Ordon F. Prediction of means and variances of crosses with genome-wide marker effects in barley. Front Plant Sci, 2018, 9: 1899.
doi: 10.3389/fpls.2018.01899 pmid: 30627135
[14] Wang L, Zhu G, Johnson W, Kher M. Three new approaches to genomic selection. Plant Breed, 2018, 137: 673-681
doi: 10.1111/pbr.12640
[15] Jean M, Cobe E, O’Donoughue L, Rajcan I, Belzile F. Improvement of key agronomical traits in soybean through genomic prediction of superior crosses. Crop Sci, 2021, 61: 3908-3918.
doi: 10.1002/csc2.20583
[16] Eberhart S A. Factors affecting efficiencies of breeding methods. Afr Soils, 1970, 15: 655-680.
[17] Cobb J N, Juma R U, Biswas P S, Arbelaez J D, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng E H. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet, 2019, 132: 627-645.
doi: 10.1007/s00122-019-03317-0
[18] Zhou J, Nguyen H T. Solve the Breeder’s Equation using High- throughput Crop Phenotyping Technology. In: High-Throughput Crop Phenotyping (1-11). Wageningen, the Netherlands: Springer, 2021.
[19] Comstock R E, Moll R H. Genotype-environment interactions. Stat Gen Plant Breed, 1963, 982: 164-196.
[20] DeLacy I H, Basford K E, Cooper M, Bull J K, McLaren C G. Analysis of multienvironment trials—a historical perspective. In: Cooper M, Hammer G L, eds. Plant Adaptation and Crop Improvement. Wallingford (UK): IRRI/CABI, 1996. p 39124.
[21] Atlin G N, Baker R J, McRae K B, Lu X. Selection response in subdivided target regions. Crop Sci, 2000, 40: 7-13.
doi: 10.2135/cropsci2000.4017
[22] Yan W. Analysis and handling of G×E in a practical breeding program. Crop Sci, 2016, 2106-2118.
[23] Cooper M, Voss-Fels K P, Messina C D, Tang T, Hammer G L. Tackling G×E×M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. Theor Appl Genet, 2021, 134: 1625-1644.
doi: 10.1007/s00122-021-03812-3 pmid: 33738512
[24] Fehr W. Principles of Cultivar Development:Theory and Technique. New York, USA: Macmillian Publishing Company, 1991.
[25] Yan W, Hunt L A, Sheng Q, Szlavnics Z. Cultivar evaluation and megaenvironment investigation based on the GGE biplot. Crop Sci, 2000, 40: 597-605.
doi: 10.2135/cropsci2000.403597x
[26] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805
Yan W. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805-1819 (in Chinese with English Abstract).
[27] Atlin G N, Kleinknecht K, Singh K P, Piepho H P. Managing genotype × environment interaction in plant breeding programs: a selection theory approach. J Ind Soc Agric Stat, 2011, 65: 237-247.
[28] Yan W. Crop Variety Trials:Data Management and Analysis. New York: John Wiley & Sons, 2014.
[29] Yan W. Mega-environment analysis and test location evaluation based on unbalanced multiyear data. Crop Sci, 2015, 113-122.
[30] Yan W. LG biplot: a graphical method for mega-environment investigation using existing crop variety trial data. Sci Rep, 2019, 9: 7130.
doi: 10.1038/s41598-019-43683-9
[31] Gabriel K R. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 1971, 58: 453-467.
doi: 10.1093/biomet/58.3.453
[32] Yan W, Mitchell-Fetch J, Beattie A, Nilsen K T, Pageau D, DeHaan B, Hayes M, Mountain N, Cummiskey A, MacEachern D. Oat mega-environments in Canada. Crop Sci, 2021, 61: 1143-1153.
[33] Yan W, Frégeau-Reid J, Martin R, Pageau D, Mitchell-Fetch J. How many test locations and replications are needed in crop variety trials for a target region? Euphytica, 2015, 361-372.
[34] Yan W. Estimation of the optimal number of replicates in crop variety trials. Front Plant Sci, 2021, 11: 2231
[35] Becker H C. Correlations among some statistical measures of phenotypic stability. Euphytica, 1981, 30: 835-840.
doi: 10.1007/BF00038812
[36] Lin C S, Binns M R, Lefkovitch L P. Stability analysis: where do we stand? Crop Sci, 1986, 26: 894-900.
doi: 10.2135/cropsci1986.0011183X002600050012x
[37] Huehn M. Nonparametric measures of phenotypic stability. Part 2: applications. Euphytica, 1990, 47: 195-201.
doi: 10.1007/BF00024242
[38] Segherloo A E, Sabaghpour S H, Dehghani H, Kamrani M. Non-parametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica, 2008, 162: 221-229.
doi: 10.1007/s10681-007-9552-x
[39] Scapim C A, Pacheco C A P, do Amaral Jr A T, Vieira R A, Pinto R J B, Conrado T V. Correlations between the stability and adaptability statistics of popcorn cultivars. Euphytica, 2010, 174: 209-218.
doi: 10.1007/s10681-010-0118-y
[40] Eberhart S T, Russell W A. Stability parameters for comparing varieties. Crop Sci, 1966, 6: 36-40.
doi: 10.2135/cropsci1966.0011183X000600010011x
[41] Ceccarelli S. Wide adaptation: how wide? Euphytica, 1989, 40: 197-205.
doi: 10.1007/BF00024512
[42] Zobel R W, Wright M J, Gauch Jr H G. Statistical analysis of a yield trial. Agron J, 1988, 80: 388-393.
doi: 10.2134/agronj1988.00021962008000030002x
[43] Yan W, Kang M S, Ma B, Woods S, Cornelius P L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 643-653.
doi: 10.2135/cropsci2006.06.0374
[44] Lin C S, Binns M R. A superiority measure of cultivar performance for cultivar × location data. Can J Plant Sci, 1988, 68: 193-198.
doi: 10.4141/cjps88-018
[45] Lin C S, Binns M R. Concepts and methods for analyzing regional trial data for cultivar and location selection. Plant Breed Rev, 1994, 12: 271-297.
[46] Kang M S. Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agron J, 1993, 85: 754-757.
doi: 10.2134/agronj1993.00021962008500030042x
[47] Gauch Jr H G, Zobel R W. Predictive and postdictive success of statistical analyses of yield trials. Theor Appl Genet, 1988, 76: 1-10.
doi: 10.1007/BF00288824 pmid: 24231975
[48] Yan W, Kang M S. GGE Biplot Analysis:a Graphical Tool for Breeders, Geneticists, and Agronomists. Boca Raton, USA: CRC Press, 2002.
[49] Gauch H G Jr. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488-1500.
doi: 10.2135/cropsci2005.07-0193
[50] Gauch H G Jr, Piepho H P, Annicchiarico P. Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci, 2008, 48: 866-889.
doi: 10.2135/cropsci2007.09.0513
[51] Yan W. GGE biplot vs. AMMI graphs for genotype-by-environment data analysis. J Indian Soc Agri Stat, 2011, 65: 181-193.
[52] Badu-Apraku B, Oyekunle M, Obeng-Antwi K, Osuman A S, Ado S G, Coulibay N. Performance of extra-early maize cultivars based on GGE biplot and AMMI analysis. J Agric Sci, 2012, 150: 473.
doi: 10.1017/S0021859611000761
[53] Amira J O, Ojo D K, Ariyo O J, Oduwaye O A, Ayo-Vaughan M A. Relative discriminating powers of GGE and AMMI models in the selection of tropical soybean genotypes. Afr J Crop Sci, 2013, 21: 67-73.
[54] Hoyos-Villegas V, Wright E M, Kelly J D. GGE biplot analysis of yield associations with root traits in a Mesoamerican bean diversity panel. Crop Sci, 2016, 56: 1081-1094.
doi: 10.2135/cropsci2015.10.0609
[55] Oliveira T R A D, Carvalho H W L D, Oliveira G H F, Costa E F N, Gravina G D A, Santos R D D, Carvalho J L S D. Hybrid maize selection through GGE biplot analysis. Bragantia, 2019, 78: 166-174.
doi: 10.1590/1678-4499.20170438
[56] Heslot N, Yang H P, Sorrells M E, Jannink J L. Genomic selection in plant breeding: a comparison of models. Crop Sci, 2012, 52, 146-160.
doi: 10.2135/cropsci2011.06.0297
[57] Cullis B R, Gleeson A C. Spatial analysis of field experiments: an extension to two dimensions. Biometrics, 1991, 47: 1449-1460.
doi: 10.2307/2532398
[58] Cullis B R, Gogel B, Verbyla A, Thompson R. Spatial analysis of multi-environment early generation variety trials. Biometrics, 1998, 54: 1-18.
doi: 10.2307/2533991
[59] Gilmour A R, Cullis B R, Verbyla A P. Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat, 1997, 2: 269-293.
doi: 10.2307/1400446
[60] Burgueño J, Cadena A, Crossa J, Banziger M, Gilmour A R, Cullis B. User’s Guide for Spatial Analysis of Field Variety Trials using ASREML. Mexico: CIMMYT, 2000.
[61] Qiao C G, Basford K E, DeLacy I H, Cooper M. Evaluation of experimental designs and spatial analyses in wheat breeding trials. Theor Appl Genet, 2000, 100: 9-16.
doi: 10.1007/s001220050002
[62] Yang R C, Ye T Z, Blade S F, Bandara M. Efficiency of spatial analyses of field pea variety trials. Crop Sci, 2004, 44: 49-55.
doi: 10.2135/cropsci2004.4900
[63] Tanksley S D. Molecular markers in plant breeding. Plant Mol Biol Rep, 1983, 1: 3-8.
[64] Yan W, Wallace D H. Breeding for negatively associated traits. Plant Breed Rev, 1995, 13: 141-177.
[65] Asins M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 2002, 121: 281-291.
doi: 10.1046/j.1439-0523.2002.730285.x
[66] Cooper M, van Eeuwijk F A, Hammer G L, Podlich D W, Messina C. Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol, 2009, 12: 231-240.
doi: 10.1016/j.pbi.2009.01.006 pmid: 19282235
[67] Hao Y, Velu G, Peña R J, Singh S, Singh R P. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol Breed, 2014, 34: 1893-1902.
doi: 10.1007/s11032-014-0147-7
[68] Crespo-Herrera L A, Velu G, Singh R P. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann Appl Biol, 2016, 169: 27-35.
doi: 10.1111/aab.12276
[69] Simmonds N, Smartt J. Principles of Crop Improvement, 2nd edn. Oxford, UK: Blackwell Science Ltd. Press, 1999.
[70] Yan W, Frégeau-Reid J. Breeding line selection based on multiple traits. Crop Sci, 2008, 48: 417-423.
doi: 10.2135/cropsci2007.05.0254
[71] Yan W, Frégeau-Reid J. Genotype by yield×trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Sci Rep, 2018, 8: 8242.
doi: 10.1038/s41598-018-26688-8
[72] Yan W, Frégeau-Reid J, Mountain N, Kobler J. Genotype and management evaluation based on genotype by yield × trait (GYT) analysis. Crop Breed Genet Genom, 2019, 1: e190002.
[73] Boureima S, Abdoua Y A O U. Genotype by yield × trait combination biplot approach to evaluate sesame genotypes on multiple traits basis. Turk J Field Crops, 2019, 24: 237-244.
[74] de Oliveira T R A, de Amaral G G, de Moura R M, de Alcântara N F, da Cruz D P, de Oliveira G H F, da Costa J M E P Rocha R S. GYT biplot analysis: a new approach for cowpea line selection. J Exp Agric Internat, 2019, 41: 1-9.
[75] Mohammadi R. Genotype by yield × trait biplot for genotype evaluation and trait profiles in durum wheat. Cereal Res Commun, 2019, 47: 541-551.
doi: 10.1556/0806.47.2019.32
[76] Goddard M E, Hayes B J. Genomic selection. J Anim Breed Genet, 2007, 124: 323-330.
pmid: 18076469
[77] Ma F, Xu Y, Ma Z, Li L, An D. Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol Breed, 2018, 38: 91.
doi: 10.1007/s11032-018-0837-7
[78] Badu-Apraku B, Bankole F A, Ajayo B S, Fakorede M A B, Akinwale R O, Talabi A O. Identification of early and extra-early maturing tropical maize inbred lines resistant to Exserohilum turcicum in sub-Saharan Africa. Crop Prot, 2021, 139: 105386.
[79] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价. 作物学报, 2021, 47: 660-671.
doi: 10.3724/SP.J.1006.2021.04135
Xu N Y, Zhao S Q, Zhang F, Fu X Q, Yang X N, Qiao Y T, Sun S X. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis. Acta Agron Sin, 2021, 47: 660-671. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04135
[80] Tsenov N, Gubatov T, Yanchev I. Genotype selection for grain yield and quality based on multiple traits of common wheat (Triticum aestivum L.). Cereal Res Commun, 2021, 49: 119-124.
doi: 10.1007/s42976-020-00080-7
[81] Sofi P A, Saba I, Ara A, Rehman K. Comparative efficiency of GY × T approach over GT approach in genotypic selection in multiple trait evaluations: case study of common bean (Phaseolus vulgaris) grown under temperate Himalayan conditions. Agric Res (India: Online), 2021, 10.1007/s40003-021-00577-5.
doi: 10.1007/s40003-021-00577-5
[82] de Oliveira L A, da Silva C P, da Silva A Q, Mendes C T E, Nuvunga J J, Nunes J A R, Parrella R A D C, Baleste M, Filho J S D S B. Bayesian GGE model for heteroscedastic multi- environmental trials. Crop Sci, 2022, 62: in press. 10.1002/csc2.20696.
doi: 10.1002/csc2.20696
[1] 张毅,许乃银,郭利磊,杨子光,张笑晴,杨晓妮. 我国北部冬麦区小麦区域试验重复次数和试点数量的优化设计[J]. 作物学报, 2020, 46(8): 1166-1173.
[2] 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368.
[3] 马岩松,刘章雄,文自翔,魏淑红,杨春明,王会才,杨春燕,卢为国,徐冉,张万海,吴纪安,胡国华,栾晓燕,付亚书,郭. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响[J]. 作物学报, 2018, 44(01): 43-52.
[4] 许乃银,金石桥,李健. 我国棉花品种区域试验重复次数和试点数量的设计[J]. 作物学报, 2016, 42(01): 43-50.
[5] 许乃银,李健. 棉花区试中品种多性状选择的理想试验环境鉴别[J]. 作物学报, 2014, 40(11): 1936-1945.
[6] 罗俊,张华,邓祖湖,许莉萍,徐良年,袁照年,阙友雄. 应用GGE双标图分析甘蔗品种(系)的产量和品质性状[J]. 作物学报, 2013, 39(01): 142-152.
[7] 严威凯. 双标图分析在农作物品种多点试验中的应用[J]. 作物学报, 2010, 36(11): 1805-1819.
[8] 倪小文;阎俊;陈新民;夏先春;何中虎;张勇;王德森;Morten Lillemo. 鲁麦21慢白粉病抗性基因数目和遗传力分析[J]. 作物学报, 2008, 34(08): 1317-1322.
[9] 王春娥;赵团结;盖钧镒. 中国栽培和野生大豆豆腐与豆乳得率的遗传变异[J]. 作物学报, 2007, 33(12): 1928-1934.
[10] 张勇;张立平;阎俊;张艳;王德森;刘建军;何中虎. 普通小麦面筋强度早代选择研究[J]. 作物学报, 2006, 32(11): 1663-1670.
[11] 邓华凤;何强;毛友纯;徐庆国;舒服;张武汉;杨飞;袁隆平. 长江流域杂交早稻品质性状的表现及配合力研究[J]. 作物学报, 2006, 32(05): 633-639.
[12] 余守武;尹建华;刘宜柏;胡标林;邹国兴;彭志勤. 三交水稻的育种研究Ⅲ.三交中晚稻主要农艺性状的配合力和遗传力分析[J]. 作物学报, 2005, 31(06): 784-789.
[13] 张坚勇;肖应辉;万向元;刘世家;王春明;陈亮明;孔令娜;翟虎渠;万建民. 水稻品种外观品质性状稳定性分析[J]. 作物学报, 2004, 30(06): 548-554.
[14] 黄蛟龙;曹致琦;马海燕;张泽. 极大似然法探测主基因的效能[J]. 作物学报, 2003, 29(01): 133-137.
[15] 李硕碧;裴阿卫;李必运. 小麦品质性状的遗传及选择方法研究[J]. 作物学报, 2002, 28(06): 816-820.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!