欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2806-2819.doi: 10.3724/SP.J.1006.2023.24209

• 耕作栽培·生理生化 • 上一篇    下一篇

不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响

赵富贵(), 张龙, 李丹, 韩固, 王楠, 侯贤清()   

  1. 宁夏大学农学院, 宁夏银川 750021
  • 收稿日期:2022-09-13 接受日期:2023-02-10 出版日期:2023-10-12 网络出版日期:2023-02-28
  • 通讯作者: 侯贤清, E-mail: houxianqing1981@126.com
  • 作者简介:E-mail: ycugui@163.com
  • 基金资助:
    国家自然科学基金项目(31860362);国家自然科学基金项目(32160515);宁夏自然科学基金项目(2020AAC03098);宁夏自然科学基金项目(2021AAC03003);宁夏自然科学基金项目(2022AAC03061)

Effects of tillage with mulching on soil water and temperature and potato yield on the dry farmland of Southern Ningxia under different climate year types

ZHAO Fu-Gui(), ZHANG Long, LI Dan, HAN Gu, WANG Nan, HOU Xian-Qing()   

  1. School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2022-09-13 Accepted:2023-02-10 Published:2023-10-12 Published online:2023-02-28
  • Contact: E-mail: houxianqing1981@126.com
  • Supported by:
    National Natural Science Foundation of China(31860362);National Natural Science Foundation of China(32160515);Natural Science Foundation of Ningxia(2020AAC03098);Natural Science Foundation of Ningxia(2021AAC03003);Natural Science Foundation of Ningxia(2022AAC03061)

摘要:

为探讨宁夏南部地区不同气候年型下耕作结合覆盖措施对旱作农田土壤水分、温度和马铃薯产量形成的影响, 于2014—2016年设置不同耕作(免耕、深松、翻耕)和覆盖(不覆盖、玉米秸秆、塑料地膜)双因素裂区定位试验。结果表明, 地膜覆盖对0~25 cm土壤温度有增温效应, 秸秆覆盖有降温效应; 2014年(正常年)免耕秸秆覆盖降低马铃薯苗期至块茎膨大期土壤温度效果最佳, 较翻耕不覆盖显著显著降低3.5℃。秸秆覆盖下0~200 cm层土壤贮水量最高; 深松、免耕土壤贮水量均高于翻耕; 深松秸秆覆盖增加苗期至块茎膨大期土壤贮水量效果最佳, 较翻耕不覆盖在正常年和高温年分别显著增加15.80%、20.77%。在正常年免耕地膜覆盖出苗率最高, 较翻耕不覆盖显著增加24.12%; 在高温年免耕秸秆覆盖出苗率最高, 较翻耕不覆盖显著增加19.32%。将马铃薯地上部生物量进行Logistic生长模拟后发现, 在正常年免耕秸秆覆盖快速生长持续期和干物质最大积累参数最高, 干物质最大积累速率较翻耕不覆盖显著增加15.80%, 在高温年深松秸秆覆盖快速生长持续期和干物质最大积累速率最高, 干物质最大积累速率较翻耕不覆盖显著增加24.28%。所有处理中, 在正常年免耕秸秆覆盖马铃薯产量最高, 较翻耕不覆盖显著增加51.82%, 在高温年深松秸秆覆盖产量最高, 较翻耕不覆盖显著增加62.08%。正常年块茎形成期的土壤水分、温度对马铃薯产量形成的影响最大, 而高温年现蕾期的土壤水分、温度对马铃薯产量形成的影响最大。可见, 深松或免耕结合秸秆覆盖能改善宁南旱区土壤水热环境, 促进马铃薯生长发育, 进而实现作物显著增产。

关键词: 耕作覆盖, 土壤水分, 土壤温度, 生长指标, 马铃薯产量

Abstract:

To clarify the effect of tillage with mulching on soil water and heat, and potato yield formation in dryland farmland under different climate years in southern of Ningxia, a two-factor split plot location experiment with different tillage methods (no-tillage, subsoiling, ploughing) and mulching material (no mulching, corn straw mulching, plastic mulching) was conducted during 2014-2016 period. The results showed that plastic film mulching had a warming effect and straw mulching had a cooling effect in 0-25 cm soil layer. In 2014 (normal temperature year), no-tillage with straw mulching had the best effect on reducing soil temperature from seedling stage to tuber expansion stage. No-tillage with straw mulching significantly reduced soil temperature by 3.5℃ compared with ploughing without mulching. Among the tillage systems, the highest soil water storage was straw mulching plots in 0-200 cm soil layer. Irrespective of the mulching materials, the water storage of subsoiling plots and no-tillage plots was higher than ploughing plots. Subsoiling with straw mulching had the best effect on increasing soil water storage during seedling stage and tuber expansion stage. The subsoiling with straw mulching increased soil water storage by 15.80% and 20.77% in normal temperature year and high temperature year, respectively. In normal temperature year, the seedling emergence rate was the highest under no-tillage with plastic film cover, which was significantly increased by 24.12% compared with ploughing without mulching. In high temperature years, the seedling emergence rate of no-tillage with straw mulching was the highest, which was significantly increased by 19.32% compared with ploughing without mulching. After Logistic growth simulation of potato aboveground biomass, it was found that the rapid growth duration and maximum dry matter accumulation parameters of no-tillage with straw mulching were the highest, and no-tillage with straw mulching significantly increased the maximum dry matter accumulation rate by 15.80% compared with ploughing without mulching in normal temperature years. The rapid growth duration and maximum dry matter accumulation parameters of subsoiling with straw mulching were the highest, and subsoiling with straw mulching significantly increased the maximum dry matter accumulation rate by 24.28% compared with ploughing without mulching in high temperature years. In all the treatments, the yield of no-tillage with straw mulching was the highest in normal temperature year and the yield of subsoiling with straw mulching was the highest in high temperature years, which significantly increased by 51.82% and 62.08% than ploughing without mulching, respectively. In normal temperature year, soil water, and temperature at tuber formation stage had the highest influence on potato yield formation. In high temperature years, soil water and temperature at budding stage had the highest influence on potato yield formation. In conclusion, the treatments of subsoiling or no-tillage with straw mulching could effectively improve the soil moisture and heat condition promote potato growth and achieve significant crop increase.

Key words: tillage with mulching, soil water, soil temperature, growth index, potato yield

图1

2013-2016年月气温和月降水量以及40年平均降水量"

表1

耕作覆盖试验设计"

裂区试验设计
Split zone test design
覆盖措施 Mulching measures
不覆盖No mulching (NM) 玉米秸秆Corn straw mulching (SM) 塑料地膜Plastic film mulching (FM)
免耕No-tillage (NT) NT×NM NT×SM NT×FM
深松Subsoiling (ST) ST×NM ST×SM ST×FM
翻耕Ploughing (PT) PT×NM PT×SM PT×FM

图2

不同耕作覆盖下马铃薯各生育期0~25 cm土层温度 处理同表1。不同小写字母表示各处理下差异显著(P < 0.05)。*表示差异达显著(P < 0.05); **表示差异极显著(P < 0.01)。T表示耕作方式; M表示覆盖措施。"

表2

不同耕作覆盖下马铃薯各生育期0~200 cm土层土壤贮水量"

年份
Year
耕作方式
Tillage method
覆盖措施
Mulching measures
苗期
Seedling stage
现蕾期
Budding stage
块茎形成期
Tuber forming stage
块茎膨大期
Tuber expansion stage
收获期
Harvest stage
2014 NT SM 440.15 a 380.64 a 363.26 a 344.31 a 485.98 a
FM 424.26 b 372.48 b 333.12 b 323.25 b 465.20 b
NM 387.57 c 345.58 c 303.26 c 300.79 c 471.48 ab
ST SM 450.98 a 431.78 a 382.92 a 360.90 a 485.24 a
FM 435.20 b 404.92 b 353.21 b 332.08 b 467.92 b
NM 401.26 b 368.24 c 325.80 c 302.28 c 469.14 b
PT SM 441.16 a 426.40 a 363.40 a 330.24 a 481.48 a
FM 437.92 a 406.60 b 329.48 b 318.92 b 464.68 b
NM 399.14 b 363.98 c 299.78 c 302.78 c 457.96 b
F
F-value
耕作Tillage 11.3* 9.2* 14.4* 10.2* 1.5
覆盖Mulch 533.4** 254.7** 219.4** 173.3** 134.6**
Tillage×Mulch 4.2* 23.4** 4.5** 7.6** 4.8*
2015 NT SM 505.94 a 469.37 a 381.44 a 357.70 a 374.83 a
FM 510.07 a 441.31 b 366.32 b 340.19 b 367.92 a
NM 465.97 b 413.86 c 326.82 c 311.05 c 341.90 b
ST SM 512.48 a 466.99 a 369.93 a 344.89 a 356.02 b
FM 506.52 a 451.30 b 352.54 b 336.49 b 385.02 a
NM 472.14 b 430.11 c 328.34 c 312.22 c 339.76 c
PT SM 498.95 a 445.01 a 370.29 a 338.02 a 379.45 a
FM 500.57 a 439.34 b 361.37 b 329.43 b 364.27 b
NM 452.38 c 398.87 c 325.59 c 307.07 c 333.40 c
F
F-value
耕作 Tillage 7.48* 13.3* 11.7* 9.2* 0.9
覆盖 Mulch 446.3** 138.6** 568.1** 484.0** 111.0**
Tillage×Mulch 3.8* 6.0** 7.0** 8.6** 4.4*
2016 NT SM 474.24 a 441.51 a 412.40 a 375.53 a 384.27 a
FM 467.24 a 425.04 b 408.90 a 356.10 b 370.06 b
NM 400.31 b 354.20 c 330.64 b 319.60 c 364.30 b
ST SM 486.12 a 425.04 a 437.26 a 395.96 a 378.50 a
FM 460.79 b 409.31 b 409.93 b 365.42 b 366.87 b
NM 395.51 c 361.34 c 334.14 c 320.01 c 354.53 c
PT SM 454.82 a 417.88 a 406.85 a 389.76 a 390.47 a
FM 444.85 a 408.61 b 395.03 b 371.87 b 382.67 b
NM 385.14 b 349.30 c 330.21 c 318.93 c 361.67 c
F
F-value
耕作Tillage 10.6* 9.2* 13.5* 11.5* 7.0
覆盖Mulch 1137.7** 379.9** 514.0** 595.7** 135.6**
Tillage×Mulch 8.5** 6.8** 5.9** 6.2** 3.6*

图3

不同耕作覆盖下马铃薯出苗率 处理同表1。不同小写字母表示不同处理下差异显著(P < 0.05)。*表示差异达显著P < 0.05; **表示差异极显著P < 0.01。T表示耕作方式; M表示覆盖措施。"

表3

不同耕作覆盖下马铃薯干物质积累特征参数"

年份
Year
耕作方式
Tillage method
覆盖措施
Mulching
measures
方程参数
Equation parameters
快速生长期特征值
Characteristic value of rapid
growth period
干物质积累参数
Dry matter accumulation parameters
Km (t hm-2) a b R2 T1 T2 T0 Δt Wmax Gmax
2014 NT SM 264.77 72.54 0.040 0.986** 74.19 139.84 65.65 107.02 36.27 0.73
FM 221.02 55.92 0.041 0.984** 66.04 130.08 64.04 98.06 27.96 0.57
NM 204.71 68.80 0.040 0.986** 72.87 138.51 65.64 105.69 34.40 0.69
ST SM 250.21 71.01 0.040 0.986** 73.66 139.30 65.64 106.48 35.51 0.71
FM 237.95 44.86 0.043 0.971** 57.84 118.90 61.06 88.37 22.43 0.48
NM 164.47 65.38 0.040 0.986** 71.60 137.24 65.64 104.42 32.69 0.65
PT SM 222.11 70.28 0.040 0.986** 73.40 139.05 65.65 106.22 35.14 0.70
FM 226.79 51.27 0.038 0.976** 68.97 138.06 69.09 103.51 25.64 0.49
NM 174.56 62.63 0.042 0.983** 67.16 129.68 62.52 98.42 31.32 0.66
2015 NT SM 142.80 80.49 0.048 0.990** 63.99 118.70 54.71 91.35 40.25 0.97
FM 148.14 72.78 0.047 0.989** 63.21 119.08 55.87 91.15 36.39 0.86
NM 124.93 73.60 0.049 0.989** 60.86 114.45 53.59 87.66 36.80 0.90
ST SM 163.34 83.03 0.047 0.991** 66.02 121.88 55.86 93.95 41.52 0.98
FM 148.35 77.28 0.049 0.990** 61.86 115.44 53.58 88.65 38.64 0.95
NM 113.49 79.79 0.048 0.988** 63.81 118.52 54.71 91.16 39.90 0.96
PT SM 134.39 65.73 0.050 0.991** 57.38 109.90 52.52 83.64 32.87 0.82
FM 143.57 60.53 0.047 0.987** 59.29 115.16 55.87 87.23 30.27 0.71
NM 127.81 63.79 0.048 0.985** 59.15 113.85 54.70 86.50 31.90 0.77
2016 NT SM 147.69 80.04 0.050 0.991** 61.32 113.84 52.52 87.58 40.02 1.00
FM 149.30 67.94 0.051 0.988** 56.91 108.39 51.48 105.38 33.97 0.87
NM 102.51 74.04 0.050 0.990** 59.76 112.28 52.52 107.53 37.02 0.93
ST SM 156.27 82.16 0.050 0.991** 61.85 114.36 52.51 88.10 41.08 1.03
FM 134.10 63.87 0.048 0.989** 59.18 113.88 54.70 103.83 31.94 0.77
NM 120.39 71.08 0.049 0.988** 60.15 113.74 53.59 106.51 35.54 0.87
PT SM 121.65 75.01 0.053 0.991** 56.63 106.17 49.54 86.28 37.51 0.99
FM 129.95 66.47 0.049 0.976** 58.78 112.37 53.59 104.83 33.24 0.81
NM 119.78 69.40 0.052 0.987** 56.22 106.72 50.50 105.91 34.70 0.90

图4

不同耕作覆盖下马铃薯总产量 处理同表1。不同小写字母表示不同处理下差异显著(P < 0.05)。*表示差异达显著P < 0.05; **表示差异极显著P < 0.01。T表示耕作方式; M表示覆盖措施。"

表4

马铃薯产量与土壤水分、温度和生长指标相关性"

年份
Year
生育时期
Growth period
土壤温度
Soil temperature
土壤贮水量
Soil water storage
出苗率
Emergence rate
地上部生物量
Aboveground biomass
地下部生物量
Underground biomass
2014 苗期 Seedling -0.628* 0.837** 0.935** 0.542** 0.461*
现蕾期 Budding -0.764* 0.670** 0.532** 0.537**
块茎形成期 Tuber forming -0.539* 0.915** 0.844** 0.792**
块茎膨大期 Tuber expansion -0.546* 0.914** 0.734** 0.825**
收获期 Harvest -0.615* 0.860** 0.583** 0.813**
2015 苗期 Seedling -0.236 0.670** 0.822** 0.320 0.411
现蕾 Budding 0.162 0.679** 0.871** 0.798**
块茎形成 Tuber forming -0.068 0.513** 0.646** 0.914**
块茎膨大 Tuber expansion -0.135 0.515** 0.866** 0.875**
收获期 Harvest -0.135 0.392* 0.788** 0.693**
2016 苗期 Seedling -0.180 0.822** 0.889** 0.565** 0.498*
现蕾 Budding 0.102 0.836** 0.973** 0.769**
块茎形成 Tuber forming -0.077 0.760** 0.899** 0.895**
块茎膨大期 Tuber expansion -0.256 0.651** 0.924** 0.803**
收获期 Harvest -0.052 0.253 0.883** 0.875**
[1] 肖国举, 仇正跻, 张峰举, 马飞, 姚玉璧, 张强, 王润元. 增温对西北半干旱区马铃薯产量和品质的影响. 生态学报, 2015, 35: 830-836.
Xiao G J, Qiu Z J, Zhang F J, Ma F, Yao Y B, Zhang Q, Wang R Y. Influence of increased temperature on the potato yield and quality in a semiarid district of northwest China. Acta Ecol Sin, 2015, 35: 830-836. (in Chinese with English abstract)
[2] Zhao H, Wang R Y, Ma B L, Xiong Y C, Qiang S C, Wang C L, Liu C A, Li F M. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Res, 2014, 161: 137-148.
doi: 10.1016/j.fcr.2014.02.013
[3] Wu Y, Huang F Y, Jia Z K, Ren X L, Cai T. Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Tillage Res, 2017, 166: 113-121.
doi: 10.1016/j.still.2016.10.012
[4] 韩固, 苗芳芳, 王楠, 侯贤清. 深松覆盖模式对宁南地区雨养马铃薯水分利用效率的影响. 中国农业气象, 2021, 42: 905-917.
Han G, Miao F F, Wang N, Hou X Q. Effects of subsoiling with mulching pattern on water use efficiency of potato in rainfed region of southern Ningxia. Chin J Agrometeorol, 2021, 42: 905-917. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6362.2021.11.002
[5] Chen Y, Chai S, Tian H, Chai Y, Li Y, Chang L, Cheng H. Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area. Agric Water Manag, 2019, 211: 142-151.
doi: 10.1016/j.agwat.2018.09.048
[6] 张冬梅, 张伟, 姜春霞, 王晓娟, 刘化涛, 杨柯, 闫六英, 刘恩科, 翟广谦. 旱地玉米不同耕作覆盖措施的土壤环境及产量效应. 中国农业大学学报, 2019, 24(6): 26-37.
Zhang D M, Zhang W, Jiang C X, Wang X J, Liu H T, Yang K, Yan L Y, Liu E K, Zhai G Q. Effects of different tillage and mulch treatments on the soil environment and yield of dryland maize. J China Agric Univ, 2019, 24(6): 26-37. (in Chinese with English abstract)
[7] 李荣, 侯贤清. 深松条件下不同地表覆盖对马铃薯产量及水分利用效率的影响. 农业工程学报, 2015, 31(20): 115-123.
Li R, Hou X Q. Effects of different ground surface mulch under subsoiling on potato yield and water use efficiency. Trans CSAE, 2015, 31(20): 115-123. (in Chinese with English abstract)
[8] 姚玉璧, 张秀云, 王润元, 邓振镛, 卢汉威. 西北温凉半湿润区气候变化对马铃薯生长发育的影响——以甘肃岷县为例. 生态学报, 2010, 30: 100-108.
Yao Y B, Zhang X Y, Wang R Y, Deng Z Y, Lu H W. Impacts of climatic change on potato growth in the semi-humid region over extra-tropical and cool northwest of China: a case study in Minxian County of Gansu Province. Acta Ecol Sin, 2010, 30: 100-108. (in Chinese with English abstract)
doi: 10.1016/j.chnaes.2010.03.009
[9] 吕巨智, 程伟东, 钟昌松, 范继征, 石达金, 刘永红, 闫飞燕. 不同耕作方式对土壤物理性状及玉米产量的影响. 中国农学通报, 2014, 30(30): 38-43.
doi: 10.11924/j.issn.1000-6850.2014-1023
Lyu J Z, Cheng W D, Zhong C S, Fan J Z, Shi D J, Liu Y H, Yan F Y. Effects of different cultivation methods on the soil physical properties and yield of maize. Chin Agric Sci Bull, 2014, 30(30): 38-43. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2014-1023
[10] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰. 西北半干旱区深旋松耕作对马铃薯水分利用和产量的影响. 应用生态学报, 2018, 29: 3293-3301.
doi: 10.13287/j.1001-9332.201810.023
Zhang X C, Ma Y F, Yu X F, Hou H Z, Wang H L, Fang Y J. Effects of vertically rotary sub-soiling tillage on water utilization and yield of potato in semiarid area of northwest China. Chin J Appl Ecol, 2018, 29: 3293-3301 (in Chinese with English abstract).
[11] 侯贤清, 汤京, 余龙龙, 赵凤萍, 王全旺, 虎恩娟, 魏科润. 秋耕覆盖对马铃薯生长及水分利用效率的影响. 排灌机械工程学报, 2016, 34(2): 165-172.
Hou X Q, Tang J, Yu L L, Zhao F P, Wang Q W, Hu E J, Wei K R. Effect of autumn mulching tillage on growth and water use efficiency of potato. J Drain Irrig Manch Eng, 2016, 34(2): 165-172. (in Chinese with English abstract)
[12] 李瑞雅, 孙敏, 任爱霞, 林文, 秦基伟, 李蕾, 卢鹏飞, 高志强. 耕作模式和播种方式对旱地小麦产量形成的影响. 干旱地区农业研究, 2022, 40(2): 17-26.
Li R Y, Sun M, Ren A X, Lin W, Qin J W, Li L, Lu P F, Gao Z Q. Effects of tillage and seeding methods on yield formation of dryland wheat. Agric Res Arid Areas, 2022, 40(2): 17-26. (in Chinese with English abstract)
[13] 莫惠栋. Logistic方程及其应用. 扬州大学学报(农业与生命科学版), 1983, 4(2): 53-57.
Mo H D. Logistic equation and its application. J Yangzhou Univ (Agric Life Sci Edn), 1983, 4(2): 53-57. (in Chinese with English abstract)
[14] 谢军红, 张仁陟, 李玲玲, 罗珠珠, 蔡立群, 柴强. 耕作方法对黄土高原旱作玉米产量和土壤水分、温度特性的影响. 中国生态农业学报, 2015, 23: 1384-1393.
Xie J H, Zhang R Z, Li L L, Luo Z Z, Cai L Q, Chai Q. Effect of different tillage practice on rain-fed maize yield and soil water/ temperature characteristics in the Loess Plateau. Chin J Eco- Agric, 2015, 23: 1384-1393. (in Chinese with English abstract)
[15] 梁冰妍, 韩凡香, 王闻天, 王振州, 常国华. 不同覆盖材料对土壤温度及马铃薯产量的影响. 安徽农学通报, 2019, 25(11): 35-37.
Liang B Y, Han F X, Wang W T, Wang Z Z, Chang G H. Effects of different mulching materials on soil temperature and potato yield. Anhui Agric Sci Bull, 2019, 25(11): 35-37. (in Chinese with English abstract)
[16] 杨雪, 逄焕成, 李轶冰, 任天志, 董国豪, 郭智慧, 王湘峻. 不同耕作方法对土壤水分、温度动态和春玉米产量的影响. 中国农业大学学报, 2013, 18(2): 29-37.
Yang X, Pang H C, Li Y B, Ren T Z, Dong G H, Guo Z H, Wang X J. Effect of different tillage treatments on soil water, temperature changes and spring maize yield in high yield region in North China Plain. J China Agric Univ, 2013, 18(2): 29-37. (in Chinese with English abstract)
[17] 周永瑾, 普雪可, 吴春花, 苗芳芳, 李荣. 垄沟集雨种植下不同降解地膜沟覆盖对农田马铃薯产量和土壤水热的影响. 核农学报, 2021, 35: 2664-2673.
doi: 10.11869/j.issn.100-8551.2021.11.2664
Zhou Y J, Pu X K, Wu C H, Miao F F, Li R. Effects of different degradable plastic film with furrow mulch under rodge-furrow planting on farmland potato yield and soil water and heat. Acta Agric Nucl Sin, 2021, 35: 2664-2673. (in Chinese with English abstract)
[18] 冯聚凯. 华北平原不同耕作方式的土壤水热特征及其对作物生长发育影响. 河北农业大学硕士学位论文, 河北保定, 2006.
Feng J K. Characteristics of Soil Temperature and Soil Water under Different Tillage Patterns and Effect on Crop Growth in North China Plain. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2006. (in Chinese with English abstract)
[19] 普雪可, 吴春花, 勉有明, 苗芳芳, 侯贤清, 李荣. 不同覆盖措施对旱作马铃薯生长及土壤水热特征的影响. 中国农业科学, 2020, 53: 734-747.
doi: 10.3864/j.issn.0578-1752.2020.04.006
Pu X K, Wu C H, Mian Y M, Miao F F, Hou X Q, Li R. Effects of different mulching patterns on growth of potato and characteristics of soil water and temperature in dry farmland. Sci Agric Sin, 2020, 53: 734-747. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.04.006
[20] Hatfield J L, Allmaras R R, Rehm G W, Lowery B. Ridge tillage for maize and soybean production: environmental quality impacts. Soil Tillage Res, 1998, 48: 145-154.
doi: 10.1016/S0167-1987(98)00141-X
[21] Hou X Q, Li R. Potato tuber yields in semi-arid environments are increased by tillage with mulching practices. Agron J, 2018, 110: 606.
[22] 汤瑛芳, 高世铭, 王亚红, 张绪成. 旱地马铃薯不同覆盖种植方式的土壤水热效应及其对产量的影响. 干旱地区农业研究, 2013, 31(1): 1-7.
Tang Y F, Gao S M, Wang Y H, Zhang X C. Soil water and thermal effects of different mulching and planting methods and their influences on yield in dryland potato production. Agric Res Arid Areas, 2013, 31(1): 1-7. (in Chinese with English abstract)
[23] 刘爽, 武雪萍, 吴会军, 梁二, 蔡典雄. 休闲期不同耕作方式对洛阳冬小麦农田土壤水分的影响. 中国农业气象, 2007, 28: 292-295.
Liu S, Wu X P, Wu H J, Liang E, Cai D X. Influence of different tillage practices during summer fallow on soil moisture in winter wheat field in Luoyang. Chin J Agrometeorol, 2007, 28: 292-295. (in Chinese with English abstract)
[24] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰. 立式深旋松耕对西北半干旱区土壤水分性状及马铃薯产量的影响. 草业学报, 2018, 27(12): 156-165.
doi: 10.11686/cyxb2018313
Zhang X C, Ma Y F, Yu X F, Hou H Z, Wang H L, Fang Y J. Effects of vertical rotary sub-soiling on soil water characteristics and potato tuber yield in a semi-arid area of northwest China. Acta Pratac Sin, 2018, 27(12): 156-165. (in Chinese with English abstract)
[25] 侯贤清, 李荣. 秋耕覆盖对土壤水热肥与马铃薯生长的影响分析. 农业机械学报, 2020, 51(12): 262-275.
Hou X Q, Li R. Effects of autumn tillage with mulching on soil water, temperature and nutrient and potato growth. Trans CSAM, 2020, 51(12): 262-275. (in Chinese with English abstract)
[26] 丁晋利, 魏红义, 杨永辉, 张洁梅, 武继承. 保护性耕作对农田土壤水分和冬小麦产量的影响. 应用生态学报, 2018, 29: 2501-2508.
doi: 10.13287/j.1001-9332.201808.005
Ding J L, Wei H Y, Yang Y H, Zhang J M, Wu J C. Effects of conservation tillage on soil water condition and winter wheat yield in farmland. Chin J Appl Ecol, 2018, 29: 2501-2508. (in Chinese with English abstract)
[27] Preez C, Steyn J T, Kotze E. Long-term effects of wheat residue management on some fertility indicators of a semi-arid Plinthosol. Soil Tillage Res, 2001, 63: 25-33.
doi: 10.1016/S0167-1987(01)00227-6
[28] 陈玉章. 不同覆盖和秸秆还田方式对旱作小麦土壤温度的影响. 甘肃农业大学硕士学位论文, 甘肃兰州, 2013.
Chen Y Z. Effects of Different Mulching and Straw Returning Methods of Wheat on Soil Temperatures in Dryland Area. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2013. (in Chinese with English abstract)
[29] 申冠宇, 杨习文, 周苏玫, 梅晶晶, 陈旭, 彭宏扬, 蒋向, 贺德先. 土壤耕作技术对小麦出苗质量、根系功能及粒重的影响. 中国农业科学, 2019, 52: 2042-2055.
doi: 10.3864/j.issn.0578-1752.2019.12.003
Shen G Y, Yang X W, Zhou S M, Mei J J, Chen X, Peng H Y, Jiang X, He D X. Impacts of soil tillage techniques on seedling quality, root function and grain weight in wheat. Sci Agric Sin, 2019, 52: 2042-2055. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.12.003
[30] 袁彦云. 半湿润渠灌区保墒灌溉对冬小麦水分养分及产量的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2006.
Yuan Y Y. Impact on Soil Moisture and Nutrient as Well as Winter Wheat Yield with Moisture Conservational Tillage in Channel Irrigate Area. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2006. (in Chinese with English abstract)
[31] 赵天武, 黄高宝, 轩春香, 谢军红, 练宏斌. 黄土高原旱地不同保护性耕作措施对马铃薯田土壤水分、温度效应及产量的影响. 干旱地区农业研究, 2009, 27(1): 101-106.
Zhao T W, Huang G B, Xuan C X, Xie J H, Lian H B. Different conservation tillage related with soil water-soil temperature and yield of potato in rainfed tillage system. Agric Res Arid Areas, 2009, 27(1): 101-106. (in Chinese with English abstract)
[32] 宫秀杰, 钱春荣, 于洋, 赵杨, 姜宇博, 王俊河, 马军韬. 深松免耕技术对土壤物理性状及玉米产量的影响. 玉米科学, 2009, 17(5): 134-137.
Gong X J, Qian C R, Yu Y, Zhao Y, Jiang Y B, Wang J H, Ma J T. Effects of subsoiling and no-tillage on soil physical characters and maize yield. J Maize Sci, 2009, 17(5): 134-137. (in Chinese with English abstract)
[33] 邝伟生, 张雪, 刘玉佩, 王勇, 梁和. 不同耕作方式对冬种马铃薯产量和品质的影响. 广西农业科学, 2008, 39(1): 30-32.
Kuang W S, Zhang X, Liu Y P, Wang Y, Liang H. Effects of different cultivation models on yield and quality of winter-planting potato. J Guangxi Agric Sci, 2008, 39(1): 30-32. (in Chinese with English abstract)
[34] Soltys K D, Plich J, Strzelczyk Z D, Sliwka J, Marczewski W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin' derived potato cultivars. Breed Sci, 2016, 66: 328-331.
doi: 10.1270/jsbbs.66.328
[35] Kar G, Kumar A. Effects of irrigation and straw mulch on water use and tuber yield of potato in eastern India. Agric Water Manage, 2007, 94: 109-116.
doi: 10.1016/j.agwat.2007.08.004
[36] 陈乐梅, 马林, 刘建喜, 石书兵, 郭飞, 库再拉, 蔺胜权. 免耕覆盖对春小麦灌浆期干物质积累特性及最终产量的影响. 干旱地区农业研究, 2006, 24(6): 21-24.
Chen L M, Ma L, Liu J X, Shi S B, Guo F, Ku Z L, Lin S Q. The effect of no-tillage with stubble on the dynamic change of dry matter accumulation and yield of spring wheat during grain filling. Agric Res Arid Areas, 2006, 24(6): 21-24. (in Chinese with English abstract)
[37] 冯浩, 刘匣, 余坤, 丁奠元, 张浩杰, 褚晓升. 不同覆盖措施对土壤水热与夏玉米生长的影响. 农业机械学报, 2016, 47(12): 192-202.
Feng H, Liu X, Yu K, Ding D Y, Zhang H J, Chu X S. Effects of different mulching patterns on soil moisture, soil temperature and summer maize growth. Trans CSAM, 2016, 47(12): 192-202. (in Chinese with English abstract)
[38] 刘璐. 秸秆覆盖与耕作方式对黑土区土壤水热及玉米产量形成的影响研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Liu L. Effects of Straw Mulching and Tillage Measures on Soil Water and Temperature and Maize Yield Formation in Black Soil Region. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019. (in Chinese with English abstract)
[39] Wang X, Wu H, Dai K, Zhang D, Feng Z, Zhao Q, Wu X, Jin K, Cai D, Oenema O. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Res, 2012, 132: 106-116.
doi: 10.1016/j.fcr.2011.09.012
[40] 莫非, 周宏, 王建永, 赵鸿, 张恒嘉, 吴姗, 陈应龙, 杨通, 邓浩亮, Asfa B, 王润元, Simon N N, 李凤民, 熊友才. 田间微集雨技术研究及应用. 农业工程学报, 2013, 29(8): 1-17.
Mo F, Zhou H, Wang J Y, Zhao H, Zhang H J, Wu S, Chen Y L, Yang T, Deng H L, Asfa B, Wang R Y, Simon N N, Li F M, Xiong Y C. Development and application of micro-field rain-harvesting technologies. Trans CSAE, 2013, 29(8): 1-17. (in Chinese with English abstract)
[41] 籍增顺. 国外免耕农业研究. 山西农业科学, 1994, 22(3): 6.
Ji Z S. No-tillage agriculture in abroad. J Shanxi Agric Sci, 1994, 22(3): 6. (in Chinese with English abstract)
[42] Gupta N, Yadav S, Humphreys E, Kukal S S, Singh B, Eberbach P L. Effects of tillage and mulch on the growth, yield and irrigation water productivity of a dry seeded rice-wheat cropping system in north-west India. Field Crops Res, 2016, 196: 219-236.
doi: 10.1016/j.fcr.2016.07.005
[43] 侯贤清, 李荣. 免耕覆盖对宁南山区土壤物理性状及马铃薯产量的影响. 农业工程学报, 2015, 31(19): 112-119.
Hou X Q, Li R. Effects of mulching with no-tillage on soil physical properties and potato yield in mountain area of southern Ningxia. Trans CSAE, 2015, 31(19): 112-119. (in Chinese with English abstract)
[44] 韩固, 苗芳芳, 王楠, 勉有明, 赵富贵, 张龙, 侯贤清. 宁南旱区耕作覆盖对马铃薯产量及土壤水热特征的影响. 应用生态学报, 2022, 33: 3352-3362.
doi: 10.13287/j.1001-9332.202211.011
Han G, Miao F F, Wang N, Mian Y M, Zhao F G, Zhang L, Hou X Q. Effects of tillage with mulching on potato yield and characteristics of soil water and temperature in arid area of southern Ningxia. Chin J Appl Ecol, 2022, 33: 3352-3362. (in Chinese with English abstract)
[1] 王鹏飞, 于爱忠, 王玉珑, 苏向向, 柴健, 李悦, 吕汉强, 尚永盼, 杨学慧. 麦后复种绿肥翻压还田结合减氮对土壤水热特性及玉米产量的影响[J]. 作物学报, 2023, 49(10): 2793-2805.
[2] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响[J]. 作物学报, 2022, 48(11): 2920-2933.
[5] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
[6] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰, 张国平, 雷康宁. 旋耕深度对西北黄土高原旱作区土壤水分特性和马铃薯产量的影响[J]. 作物学报, 2021, 47(1): 138-148.
[7] 侯慧芝, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁. 全膜微垄沟播对寒旱区春小麦苗期土壤水热环境及光合作用的影响[J]. 作物学报, 2020, 46(9): 1398-1407.
[8] 方彦杰,张绪成,于显枫,侯慧芝,王红丽,马一凡. 旱地全膜覆土穴播荞麦田土壤水热及产量效应研究[J]. 作物学报, 2019, 45(7): 1070-1079.
[9] 侯贤清,牛有文,吴文利,徐金鹏,时龙,唐少颖,马旭,李荣. 不同降雨年型下种植密度对旱作马铃薯生长、水分利用效率及产量的影响[J]. 作物学报, 2018, 44(10): 1560-1569.
[10] 安俊朋, 李从锋, 齐华, 隋鹏祥, 张文可, 田平, 有德宝, 梅楠, 邢静. 秸秆条带还田对东北春玉米产量、土壤水氮及根系分布的影响[J]. 作物学报, 2018, 44(05): 774-782.
[11] 张玉娇,李军,郭正,岳志芳. 渭北旱塬免耕/深松轮耕麦田产量和土壤水分对施肥的响应模拟[J]. 作物学报, 2015, 41(11): 1726-1739.
[12] 于爱忠,柴强*. 供水与地膜覆盖对干旱灌区玉米产量的影响[J]. 作物学报, 2015, 41(05): 778-786.
[13] 柴守玺,杨长刚,张淑芳,陈恒洪,常磊. 不同覆膜方式对旱地冬小麦土壤水分和产量的影响[J]. 作物学报, 2015, 41(05): 787-796.
[14] 孙敏,温斐斐,高志强*,任爱霞,邓妍,赵维峰,赵红梅. 不同降水年型旱地小麦休闲期耕作的蓄水增产效应[J]. 作物学报, 2014, 40(08): 1459-1469.
[15] 孙敏,高志强*,赵维峰,任爱霞,邓妍,苗果园. 休闲期深松配施氮肥对旱地土壤水分及小麦籽粒蛋白质积累的影响[J]. 作物学报, 2014, 40(07): 1286-1295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .