Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (03): 381-393.doi: 10.3724/SP.J.1006.2012.00381

• REVIEW •     Next Articles

Structure, Function, and Co-evolution of Rice Blast Resistance Genes

Moytri ROYCHOWDHURY1,JIA Yu-Lin2,*, Richard D.CARTWRIGHT1,3   

  1. 1 University of Arkansas, Cell and Molecular Biology Program, Fayetteville, AR 72701, USA; 2 USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; 3 University of Arkansas, Division of Agriculture, Cooperative Extension Service, Little Rock, AR 72204, USA
  • Received:2011-09-21 Revised:2011-12-19 Online:2012-03-12 Published:2012-01-04
  • Contact: JIA Yu-Lin, E-mail: yulin.jia@ars.usda.gov, Tel: 1 870-672-9300
  • Supported by:

    This work is supported by USDA-ARS National Program NP301 project “Response of Diverse Rice Germplasm to Biotic and Abiotic Stresses project No. 6225-21000-008-00D”.

Abstract: Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of the most destructive rice diseases worldwide. Resistance (R) genes to blast encode proteins that detect pathogen signaling molecules encoded by M. oryzae virulence (AVR) genes. R genes can be a single copy gene or a member of clustered gene families that have evolved through duplication and diversification. Recent advances in blast R gene cloning and subsequent characterization have provided useful insights into R gene mediated signaling transduction pathways. This review summarizes recent advances in cloning and characterization of blast R genes, and presents an update on evolutionary dynamics of R proteins, their interaction and co-evolution with the signaling molecules encoded by the AVR genes, and potential implications for crop protection.

Key words: R genes, AVR genes, Blast diseaseGene interaction, Magnaporthe oryzae

[1]Wang Z, Jia Y, Lin H, Valent B, Rutger J N. Host active defense responses occur within 24 hours after pathogen inoculation in the rice blast system. Chin J Rice Sci, 2007, 14(4): 302-310

[2]Talbot N J. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 2003, 57: 177-202

[3]Kankanala P, Czymmek K, Valent B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell, 2007, 19: 706-724

[4]International Rice Research Institute (IRRI) Knowledge Bank. Rice Blast http://www.knowledgebank.irri.org/RiceDoctor/Fact_Sheets/Diseases/ Rice_Blast.htm

[5]International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800

[6]Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H, Read N D, Lee Y H, Carbone I, Brown D, Oh Y, Donofrio N, Jeong J, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L, Nicol R, Purcell S, Nusbaum C, Galagan J E, Birren B W. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434: 980-986

[7]Goto I. Genetic studies on the resistance of rice plant to the blast fungus. I. Inheritance of resistance in crosses Sensho X H-79 and Imochi-shirazu X H-79. Ann Phytopathol Soc Jpn, 1970, 36: 304-312

[8]Flor H H. Current status of the gene-for-gene concept. Annu Rev Phytopathol, 1971, 9: 275-296

[9]Ballini E, Morel J B, Droc G, Price A H, Courtois B, Nottehem J L, Tharreau D A. Genome wide meta analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact, 2008, 21: 859-868

[10]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64

[11]McClung A M, Fjellstrom R G, Bergman C J, Bormans C A, Park W D, Marchetti M A. Registration of ‘Saber’ rice. Crop Sci, 2004, 44: 693-694

[12]Hammond-Kosack K E, Jones J D. Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 573-605

[13]Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033-2045

[14]Moldenhauer K A K, Lee F N, Norman R J, Helms R S, Well R H., Dilday R H, Rohman P C, Marchetti M A. Registration of ‘Katy’ rice. Crop Sci, 1990, 30: 747-748

[15]Jones D A, Jones J D G. The role of leucine-rich repeat proteins in plant defenses. Adv Bot Res Adv Plant Pathol, 1996, 24: 89-167

[16]Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G W. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901-1914

[17]Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G W. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19: 1216-1228

[18]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 1999, 19: 55-64

[19]Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46: 794-804

[20]Wasano N, Ohgushi A, Ohba M. Mannose-specific lectin activity of parasporal proteins from a lepidoptera-specific Bacillus thuringiensis strain. Curr Microbiol, 2003, 46: 43-46

[21]Liu X, Lin F, Wang L, Pan Q. The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007, 176: 2541-2549

[22]Grant M R, Godiard L, Straube E, Ashfield T, Lewald J, Sattle R A, Innes R W, Dangl J L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995, 269: 843-846

[23]Traut T W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Eur J Biochem, 1994, 229: 9-19

[24]Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177: 1871-1880

[25]Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent NBS-LRR class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180: 2267-2276

[26]Jeon J S, Chen D, Yi G H, Wang G L, Ronald P C. Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol Genet Genomics, 2003, 269: 280-289

[27]Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics, 2009, 181: 1627-1638

[28]Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet, 2006, 113: 251-260

[29]Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 57: 413-425

[30]Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang, M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L. Identification of a new rice blast resistance gene, Pid3, by genome-wide comparison of paired NBS-LRR genes and their pseudo gene alleles between the two sequenced rice genomes. Genetics, 2009, 182: 1303-1311

[31]Chen J, Shi Y, Liu W, Chai R, Fu Y, Zhuang J, Wu J. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics, 2011, 38: 209-216

[32]Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998-1001

[33]Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64: 498-510

[34]Fujii K, Hayano-Saito Y, Saito K, Sugiura N, Hayashi N, Tsuji T, Izawa T, Iwasaki M. Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1, in rice. Breed Sci, 2000, 50: 183-188

[35]Halterman D A, Wise R P. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J, 2004, 38: 215-226

[36]Rairdan G J, Collier S M, Sacco M A, Baldwin T T, Boettrich T, Moffett P. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell, 2008, 20: 739-751

[37]Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam Clark D, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, 66: 467-479

[38]Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma Y, Takano Y, Win J, Kamoun S. Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell, 2009, 21: 1573-1591

[39]Jia Y, Moldenhauer K A K. Development of monogenic and digenic rice lines for blast resistance genes Pi-ta, Pi-kh/Pi-ks. J Plant Reg, 2010, 4: 163-166

[40]Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q. The isolation and characterization of Pik, a rice blast resistance gene that emerged after rice domestication. New Phytologist, 2010, 189: 321-334

[41]Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122: 1017-1028

[42]Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Pathol, 2010, 175: 1-14

[43]Jia Y, McAdams S A, Bryan G T, Hershey H P, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000, 19: 4004-4014

[44]Jia Y, Martin R. Identification of a new locus Ptr (t) required for rice blast resistance gene Pi-ta mediated resistance. Mol Plant Microbe Interact, 2008, 21: 396-403

[45]Kang S, Sweigard J A, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact, 1995, 8: 939-948

[46]Ma J H, Wang L, Feng S J, Lin F, Xiao Y, Pan Q H. Identification and fine mapping of AvrPi15, a novel avirulence gene of Magnaporthe grisea. Theor Appl Genet, 2006, 113: 875-883

[47]Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 1995, 7: 1221-1233

[48]Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2019-2032

[49]Kang S, Lebrun M H, Farrall L, Valent B. Gain of virulence caused by insertion of a Pot 3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant-Microbe Interact, 2001, 14: 671-674

[50]Zhou E, Jia Y, Singh P, Correll J C, Lee F N. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet Biol, 2007, 44: 1024-1034

[51]Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang,Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact, 2009, 22: 411-420

[52]Hulbert S H, Webb C A, Smith S M, Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol, 2001, 39: 285-312

[53]Lee S, Costanzo S, Jia Y, Olsen K, Caicedo A. Evolutionary dynamics of the genomic region around the blast resistance gene Pi-ta in AA genome Oryza species. Genetics, 2009, 183: 1315-1325

[54]Costanzo S, Jia Y. Alternatively spliced transcripts of Pi-ta blast resistance gene in Oryza sativa. Plant Sci, 2009, 177: 468-478

[55]Dai Y, Jia Y, Correll J, Wang X, Wang Y. Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genet Biol, 2010, 47: 974-980

[56]Farman M L, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong S A. Analysis of the structure of the Avr1-Co39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol Plant-Microbe Interact, 2002, 15: 6-16

[57]Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Yang S, Hu L, Leung H, Mew T W, Teng P S, Wang Z, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406: 718-722

[58]Mundt C C. Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol, 2002, 40: 381-410

[59]Moffat A S. Finding new ways to fight plant diseases. Science, 2001, 292: 2270-2273

[60]Dangl J L, Jones J D G. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411: 826-833

[61]Jones J D. Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol, 2001, 4: 281-287
[1] HE Xin-Yao,HAO Yuan-Feng,ZHOU Yi-Lin,HE Zhong-Hu. Progress and Perspective in Wheat Blast Research [J]. Acta Agron Sin, 2017, 43(08): 1105-1114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!