Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (10): 1468-1476.doi: 10.3724/SP.J.1006.2018.01468

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of Hairy Root Induction System and Functional Analysis of TTG1 Gene in Brassica juncea

Long LI1,2,Cheng CHENG1,2,Xiao-Fang WU1,2,Da-Wei ZHANG1,3,Li-Li LIU1,3,Jing ZHOU1,Mei-Liang ZHOU2,Kai-Xuan ZHANG2,*(),Ming-Li YAN1,3,*()   

  1. 1 College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
  • Received:2018-02-14 Accepted:2018-06-12 Online:2018-10-10 Published:2018-07-02
  • Contact: Kai-Xuan ZHANG,Ming-Li YAN E-mail:zhangkaixuan@caas.cn;ymljack@126.com
  • Supported by:
    This study was supported by the National Key Research and Development Program(2016YFD0100202);the Natural Science Foundation of Hunan Province(2016JJ1010);the National Natural Science Foundation of China(31572457);the Foundation of Hunan Education Department(17K035)

Abstract:

Yellow seed rape has the advantages of thin seed coat and high oil yield. It is of great significance to study the formation of yellow seed in rapeseed. Previous studies showed that TTG1 (TRANSPARENT TESTA GLABRA 1) gene was involved in the formation of seed coat color. In this study, Agrobacterium rhizogenes A4 strain was used to induce hairy roots of Sichuan yellow, and investigate the effects of bacterial concentration and different sources of explants on hairy root induction. The highest average rooting rate was 71.5% when the OD value of A. rhizogenes A4 reached to 0.8. The average rooting rate of hypocotyls was significantly higher than that of cotyledons and up to 87.3% after the infection. Overexpression of TTG1 gene in Sichuan yellow hairy roots inhibited the expression of DFR (Dihydroflavonol4-reductase), ANS (Anthocyanidin synthase), and BAN (Anthocyanidin reductase) genes, encoding key enzymes of the proanthocyanidins biosynthesis. In this study, we optimized the induction system of hairy roots in B. juncea, and analyzed the function of TTG1 in the regulation of proanthocyanidins synthesis pathway, which provide a new idea and method for the functional analysis of genes in the hairy root system.

Key words: Brassica juncea, hairy root, inducing condition, TTG1 gene, proanthocyanidins

Table 1

List of qRT-PCR primers"

基因
Gene
名称
Name
引物
Primer (5°-3°)
PCR长度
PCR length (bp)
BAN Anthocyanidin reductase F: ATCTTCCATGTCGCAACTCC
R: CGAGAGAGATAAACTGCTAG
200
DFR Dihydroflavonol4-reductase F: AGGATTCATTGGTTCATGGCTCG
R: TCCGTTTATGGCGTCATCGTAGC
189
ANS Anthocyanidin synthase F: GGACAACTTGAGTGGGAAGATTA
R: GCAAACGAAGACACTTAGCGTAC
132
TTG1 protein (“WD40” or “WDR”) F: GGCTGTAAGCATATCTGTTCCG
R: GAGAAAGCAATCCCAATCCAATG
173
内参
Internal reference
Actin7 F: GCTGACCGTATGAGCAAAG
R: AAGATGGATGGACCCGAC
182

Table 2

Effects of different explants on the induction rate of hairy roots"

外植体
Explant
感染外植体数量
Number of infected explants
外植体发根数量
Number of explants rooted
诱导率
Induction rate (%)
下胚轴 Hypocotyl 30 26.2±0.3 a 87.3±0.01 a
子叶 Cotyledon 30 12.0±0.5 b 40.0±0.02 b

Fig. 1

Process of the hairy root induction A: 14 d SY rape sterile seedling; B: 7 d explants with hairy roots; C: 14 d hairy roots; D: 21 d hairy roots on the screening medium; E: 28 d hairy roots in the liquid medium; F: 21 d hairy roots in the liquid medium."

Fig. 2

Induction efficiency of different concentrations of A. rhizogenes A4 on hairy roots"

Fig. 3

Vector construction A: pCAMBIA3301 vector; B: pCAMBIA3301 vector containing TTG1 gene."

Fig. 4

Identification of the transformed A. rhizogenes A4 A: identification of TTG1 gene in A. rhizogenes A4. +: pCAMBIA3301-TTG1, -: H2O; B: identification of GUS gene in A. rhizogenes A4. +: pCAMBIA3301 plasmid, -: H2O."

Fig. 5

Identification of transgenic hairy roots A: three lines of hairy roots overexpressing GUS gene tested by PCR. +: pCAMBIA3301 plasmid; -: wild type hairy roots; B: three lines of hairy roots overexpressing TTG1 gene tested by PCR. +: pCAMBIA3301-TTG1; -: wild-type hairy roots."

Fig. 6

Staining of wild type and transgenic hairy roots L1, L2, L3: three lines of wild-type hairy roots; Z1, Z2, Z3: three lines of hairy roots overexpressing GUS genes."

Fig. 7

Growth comparison of wild type and transgenic hairy roots A1: wild-type hairy root tip; B1: GUS-overexpression hairy root tip; C1: TTG1-overexpression hairy root tip; A2: 14 d old wild-type hairy roots; B2: 14 d old GUS-overexpression hairy roots; C2: 14 d old TTG1-overexpression hairy roots."

Fig. 8

Related genes expression tested by qRT-PCR A: TTG1 gene; B: DFR gene; C: ANS gene; D: BAN gene."

Fig. 9

MBW complex formed by TT2, TT8, and TTG1 regulates the expression of DFR, ANS, and BAN genes in the proanthocyanidin metabolism pathway of Arabidopsis thaliana The enzyme genes of the PA metabolic pathway are chalconesynthase (CHS), chalconeisomerase (CHI), flavanone3-hydroxylase (F3H), flavonoid3'-hydroxylase (F3’H), dihydroflavonol4-reductase (DFR), anthocyaninsynthase (ANS), anthocyanidinreductase (BAN), MATE secondary transporter (TT12), and glutathione S-transferase (TT19)."

[1] Zhou M L, Zhu X M, Shao J R, Tang Y X, Wu Y M . Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol, 2011,90:1229-1239
doi: 10.1007/s00253-011-3228-0 pmid: 21468707
[2] Largia M J V, Satish L, Johnsi R, Johnsi R, Shilpha J, Ramesh M . Analysis of propagation of Bacopa monnieri( L.) from hairy roots, elicitation and Bacoside A contents of Ri transformed plants. World J Microbiol Biotechnol, 2016,32:131
[3] 黄建安, 刘仲华 . 毛状根培养与植物次生代谢物的生产. 微生物学杂志, 2003,23(5):35-39
doi: 10.3969/j.issn.1005-7021.2003.05.011
Huang J A, Liu Z H . Cultivation of hairy roots and production of plant secondary metabolites. J Microbiol, 2015,23(5):35-39 (in Chinese)
doi: 10.3969/j.issn.1005-7021.2003.05.011
[4] 袁玉辉 . 芥菜型油菜TT8干扰载体的构建及遗传转化. 湖南农业大学硕士学位论文, 湖南长沙, 2013
Yuan Y H . The Construction of TT8 Interference Vector and Genetic Transformation of Brassica juncea (L.). MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2013 ( in Chinese with English abstract)
[5] 谢伶俐, 李加纳, 殷家明, 柴友荣, 许本波, 林呐 . 根癌农杆菌介导转化甘蓝型油菜子叶GUS基因瞬表达. 中国油料作物学报, 2007,29(1):9-13
Xie L L, Li J N, Yin J M, Chai Y R, Xu B B, Lin N . Transient expression of GUS gene in cotyledons of rapeseed mediated by Agrobacterium tumefaciens. Chin J Oil Crop Sci, 2007,29(1):9-13 (in Chinese with English abstract)
[6] 刘静轶 . 发根农杆菌介导IRT1基因转化镉超富集植物油菜的研究. 北京交通大学硕士学位论文, 北京, 2014
Liu J T . Research on Agrobacterium rhizogenes-mediated IRTI Gene Transformation in Cd Hyperaccumulator Brassica campestris L. MS Thesis of Beijing Jiaotong University, Beijing, China, 2014 ( in Chinese with English abstract)
[7] 岳迎春 . 芥菜型油菜种皮颜色转录因子基因TT2遗传转化体系优化及种皮色素分析. 湖南农业大学硕士学位论文, 湖南长沙, 2010
Yue Y C . Pigment Analysis of the Seed Coat Color Transcription Factor Gene TT2 Genetic Transformation System Optimization in Brassic juncea. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 ( in Chinese with English abstract)
[8] 严明理, 刘显军, 刘忠松, 官春云, 袁谋志, 熊兴华 . 芥菜型油菜4-二氢黄酮醇还原酶基因的克隆和表达分析. 作物学报, 2008,34:1-7
Yan M L, Liu X J, Liu Z S, Guan C Y, Yuan M Z, Xiong X H . Cloning and expression analysis of the dihydroflavonol 4-reductase gene in Brassica juncea. Acta Agron Sin, 2008,34:1-7 (in Chinese with English abstract)
[9] Yan M L, Liu X J, Guan C Y, Chen X B, Liu Z S . Cloning and expression analysis of an anthocyanidin synthase gene homolog from Brassica juncea. Mol Breed, 2011,28:313-322
doi: 10.1007/s11032-010-9483-4
[10] Liu L L, Huang T, Ding S P, Wang Y, Yan M L . BANYULS genes from Brassica juncea and Brassica nigra: cloning, evolution and involvement in seed coat color. J Agric Sci, 2016,155:421-430
[11] Gonzalez A, Zhao M, Leavitt J M, Lloyd A M . Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008,53:814-827
[12] Albert S, Delseny M, Devic M . BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J, 1997,11:289-299
doi: 10.1046/j.1365-313X.1997.11020289.x pmid: 9076994
[13] Zhang F, Gonzalez A, Zhao M, Payne C T, Lloyd A . A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development, 2003,130:4859-4869
doi: 10.1242/dev.00681 pmid: 12917293
[14] Zhou L H, Li Y L, Hussain N, Li Z L, Wu D Z, Jiang L X . Allelic variation of BnaC TT2.a and its association with seed coat color and fatty acids in rapeseed( Brassica napus L.). PLoS One, 2016,11:e0146661
[15] Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K . Natural mutations in two ohomoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea ( AABB). Theor Appl Genet, 2014,127:339-347
[16] 刘显军 . 芥菜型油菜黄籽基因克隆和黄籽形成机制分析 . 湖南农业大学博士学位论文, 湖南长沙, 2013
Liu X J . Positional Cloning of the Gene for Seed Color and Molecular Mechanism of Yellow Seed Formation in Brassica juncea. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2013 ( in Chinese with English abstract)
[17] Liu K G, Qi S H, Li D, Jin C Y, Gao C H, Duan S W, Feng B L, Chen M X . TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). Plant Sci, 2017,254:60-69
[18] Buer C S, Djordjevic M A . Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot, 2009,60:751-763
[19] Liu X W, Bartholomew E, Cai Y L, Ren H Z . Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumis sativus L.). Front Plant Sci, 2016,7:1187
[20] 严明理 . 芥菜型油菜黄籽形成的分子机理研究. 湖南农业大学博士学位论文, 湖南长沙, 2007
Yan M L . Studies on the Molecular Mechanism of Yellow- seeded Formation in Brassica juncea. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2007 ( in Chinese with English abstract)
[21] 朱宽鹏 . 芪合酶基因Fm-STS在何首乌毛状根中过量表达与dsRNA干扰. 华南理工大学硕士学位论文, 广东广州, 2012
Zhu K P . Double-stranded RNA-mediated Gene Silencing and Over-expression of Fm-STS in Polygonum multiflarum Thunb Hairy Roots. MS Thesis of South China University of Technology, Guangzhou, Guangdong, China, 2012 ( in Chinese with English abstract)
[22] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262
[23] 王成龙 . 苦荞毛状根的诱导及高频再生体系的建立. 四川农业大学硕士学位论文, 四川雅安 2015
Wang C L . Induction Hairy Roots and Established High- Frequency Plant Regeneration System of Tartary Buckwheat (Fagopyrum tataricum Gaertn.), Ya’an, Sichuan, China, 2015 ( in Chinese with English abstract)
[24] Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V . Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot, 2011,62:2465
doi: 10.1093/jxb/erq442
[25] Zhu Q L, Yu S Z, Zeng D C, Liu H M, Wang H C, Yang Z F, Xie X R, Shen R X, Tan J T, Li H Y, Zhao X C, Zhang Q Y, Chen Y L, Guo J X, Chen L T, Liu Y G . Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant, 2017,10:918-929
doi: 10.1016/j.molp.2017.05.008
[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] HUANG Wei, GAO Guo-Ying, WU Jin-Feng, LIU Li-Li, ZHANG Da-Wei, ZHOU Ding-Gang, CHENG Hong-Tao, ZHANG Kai-Xuan, ZHOU Mei-Liang, LI Mei, YAN Ming-Li. Regulation of flavonoid synthesis by BjA09.TT8 and BjB08.TT8 genes in Brassica juncea [J]. Acta Agronomica Sinica, 2022, 48(5): 1169-1180.
[3] GAO Guo-Ying, WU Xiao-Fang, HUANG Wei, ZHOU Ding-Gang, ZHANG Da-Wei, ZHOU Mei-Liang, ZHANG Kai-Xuan, YAN Ming-Li. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea [J]. Acta Agronomica Sinica, 2020, 46(9): 1322-1331.
[4] TAO Jun; TAN Ru-Fang and LI Ling. Genetic Transformation of Sunflower (Helianthus Annuus L.) Mediated by Agrobacterium rhizogenes [J]. Acta Agron Sin, 2006, 32(05): 743-748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!