Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (6): 807-817.doi: 10.3724/SP.J.1006.2019.81090

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat

Di JIN1,*,Dong-Zhi WANG2,*,Huan-Xue WANG3,Run-Zhi LI3,Shu-Lin CHEN1,Wen-Long YANG2,Ai-Min ZHANG2,Dong-Cheng LIU2,4,*(),Ke-Hui ZHAN1,*()   

  1. 1 Agronomy College of Henan Agricultural University, Zhengzhou 450002, Henan, China
    2 State Key Laboratory of Plant Cell and Chromosome Engineering / Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
    3 College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
    4 Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
  • Received:2018-12-19 Accepted:2019-01-19 Online:2019-06-12 Published:2019-06-12
  • Contact: Di JIN,Dong-Zhi WANG,Dong-Cheng LIU,Ke-Hui ZHAN E-mail:dongchengliu@ustb.edu.cn;kh486@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0101800);the National Natural Science Foundation of China(31571643)

Abstract:

Awn is one of the important photosynthetic organs in common wheat and plays a vital role in yield potential and environmental adaptation. At present, the inheritance and development of wheat awn have been not systematically studied, and cloning or fine mapping of related genes are seldom reported. In this study, the genetics and candidate genes conferring the short awn of a Chinese wheat landrace ‘Liuzhutou’ were investigated. Longitudinal section of awn showed cell size of short awn was much shorter than that of long awn. Using Wheat660K SNP chip based bulked segregant analysis (BSA) and SL-F2 population derived from ‘Liuzhutou’ (short awn) and modern cultivar ‘Shiai 1’ (long awn), the awn inhibiting gene in ‘Liuzhutou’ was mapped in a 4.84 Mb interval on chromosome 6BL and predicted as previously characterized B2. A good micro-collinearity of B2 region was observed among chromosomes 6B, 6A, 6D of Chinese Spring and chromosome 6B of AK58, there were 61 genes annotated in the 4.84 Mb B2 region, five of which were specifically expressed in the developing spike of Chinese Spring, and TraesCS6B02G264400 was differentially expressed between Chinese Spring and Azhurnaya. These data provide important clues for cloning the B2 gene, dissecting the developing mechanism of wheat awn and its application in molecular breeding.

Key words: common wheat, awn, B2, fine mapping, BSA, Wheat660K

Table 1

Primers used in this study"

引物名称
Primer ID
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
内切酶
Restriction enzyme
片段大小
Size (bp)
B2精细定位 Markers for mapping B2
Xgwm88 * CACTACAACTATGCGCTCGC TCCATTGGCTTCTCTCTCAA 120
SSR43 ACTATCACAAGCCGGAGTAA AGTGGTTAAATCGCCACTAA 172
SSR122 CATGTTACCACCAAAGGATT CTATGTGGCTGACCGTTACT 205
EST-499300LC TCCAAAGAATCCTGGAGGTG TGTTCTGACCATCCCACGTA Pvu II 393/270
dCAPS-18 GACCACCCGACACCGCCGCTGCA GCTCATCTCCAATAGCTCGC Pst I 204/184
dCAPS-19 CAAAACTTCTTGGGAGAATATAC CCCTGACATCGTCTCGAACT Mlu I 192/172
dCAPS-4 GTAAGCAGCGAGGTTAGCACTGC CTGGTGCTCATGAGTTGTGG Pst I 296/276
EST-263300 CGTGTGCTTAAATGCTCCATGG GCTGACTTATGCTGCTTTACTTTCTAA Taq I 521/472
CAPS-12 ATTGATGCAAAGGAACCAGG GAGTTCCATGGCCTCATTGT Eco RI 308/236
CAPS-14 GGAAGGTCCACTTTGCATGT CACCACAGGGACGAAATTCT Bam HI 281/265
dCAPS-39 GTTTTCTTTGTAGAAGTCCCATA AAACACCTGAAAATCGTGGC Nde I 185/165
EST-265400 CCATCAGTCCAACCATGACTTGT TAACATAAGCGTCGCTGTGGC Pst I 246/(111+135)
CAPS-19 TGTCCTTGAAGGGGGTAGTG TCCTGCATTATGCCACAAAA Nde I 483/(217+266)
WABM232658 * AAGTTCGCCTCTTCACCAGT TCTGCCCCTACATCTGTTGC 130
SSR74 CATAATCACAATTCATCGGA TTCATACCTGACCCATCTTC 214
SSR116 AGAATCAGTTTTCAGCCAGA AACTATCCCGTATACTTGCG 168
WABM214868 * GGGTGCCTGAACATTGATGC CCCCAAGTGCTGTCGTGTAT 126
候选基因克隆 Gene cloning primers
6B01G262600 AGCGAAGCAGTCAGTACTCAGT CTTGCATGGATAATCGAAACATAGGA 1041
6B01G263300 CGTGTGCTTAAATGCTCCATGG GCTGACTTATGCTGCTTTACTTTCTAA 1110
6B01G264600 GCCCATTTTTGCAGTCATGACATCA CGGGATGAAAACCTGCTCTTC 1760
6B01G265400 CCATCAGTCCAACCATGACTTGT TAACATAAGCGTCGCTGTGGC 1071
6B01G504500LC CACACACACACACACCAAAACTC GGCATACTGCGAACAACCCA 985
6B01G505500LC AGCAGCTGGGTGAAGTTAACTA TTCCAGCCCCCTTTTACAAGAT 1437

Fig. 1

Longitudinal section of middle region in long awn (A) and short awn (B)"

Fig. 2

Population construction and analysis of Wheat660K SNP chip (A) Population construction of SL-F2 and the awn character of ‘ShiAi 1’, ‘Liuzhutou’ F1 and F2; (B) The distribution of differential SNP locus on each chromosome and between bulks of SL-F2 population; (C) The distribution of differential SNP locus on chromosome 6B between bulks of SL-F2 population. Un: unknown."

Table 2

Chi-square test and genetic analysis of SL-F2 population"

单株数
No. of F2 plants
观察值 Observed value 理论值 Expected value 理论比值
Expected ratio
χ2
χ2-value
P
P-value
长芒
Long awn
短芒
Short awn
长芒
Long awn
短芒
Short awn
1413 350 1063 353 1060 3:1 0.04 0.84

Fig. 3

Fine mapping of awn inhibiting gene B2 (A) The linkage map of B2 locus in SL-F2 population; (B) The physical map of B2 locus in SL-F2 population; (C) The marker genotype and progeny validation phenotype of key recombinants in SL-F2 population."

Fig. 4

Micro-collinearity analysis of B2 region From left to right are chromosome 6B of AK58, chromosomes 6B, 6A, and 6D of CS; genes in red and cyan colors indicate no homologous genes on chromosomes 6B of CS and AK58, respectively."

Fig. 5

Annotation and expression profiling of genes in B2 region The expression level of each sample is printed as deep blue representing the lowest value to deep red representing the highest value in the heat map. The gene names are followed closely by their annotation information, and the genes in red indicate that its expression reaches the threshold of Fold-Change (TPMSpike/TPMMean (Leaf, Root, Grain)) ≥ 2 in Chinese Spring."

[1] Watkins A E, Ellerton S . Variation and genetics of the awn in Triticum. J Genet, 1940,40:243-270.
doi: 10.1007/BF02982493
[2] 毕昆, 姜盼, 唐崇伟, 黄菲菲, 王成 . 基于麦穗特征的小麦品种BP分类器设计. 中国农学通报, 2011,27:464-468.
Bi K, Jiang P, Tang C W, Huang F F, Wang C . The design of wheat variety BP classifier based on wheat ear feature. Chin Agric Sci Bull, 2011,27:464-468 (in Chinese with English abstract).
[3] Bariana H S, Parry N, Barclay I R, Loughman R ,McLean R J, Shankar M, Wilson R E, Willey N J, Francki M .Identification and characterization of stripe rust resistance gene Yr34 in common wheat.Theor Appl Genet, 2006,112:1143-1148.
doi: 10.1007/s00122-006-0216-3 pmid: 16435125
[4] Cuthbert J L, Somers D J , Brûlé-Babel A L,Brown P D,Crow G H. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet, 2008,117:595-608.
doi: 10.1007/s00122-008-0804-5 pmid: 18516583
[5] Qureshi N, Bariana H S, Zhang P , McIntosh R, Bansal U K, Wong D, Hayden M J, Dubcovsky J, Shankar M .Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis, 2018,102:413-420.
[6] 王忠, 顾蕴洁, 高煜珠 . 麦芒的结构及其光合特性, 植物学报, 1993,35:921-928.
Wang Z, Gu Y J, Gao Y Z . Structure and photosynthetic characteristics of awns of wheat and barley. Acta Bot Sin, 1993,35:921-928 (in Chinese with English abstract).
[7] Li X, Wang H, Li H, Zhang L, Teng N, Lin Q, Wang J, Kuang T, Li Z, Li B, Zhang A, Lin J . Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat ( Triticum aestivum). Physiol Plant, 2006,127:701-709.
doi: 10.1111/j.1399-3054.2006.00679.x
[8] Olugbemi L B . Distribution of carbon-14 assimilated by wheat awns. Ann Appl Biol, 1978,90:111-114.
doi: 10.1111/j.1744-7348.1978.tb02616.x
[9] Kriedemann P . The photosynthetic activity of the wheat ear. Ann Bot, 1966,30:349-363.
doi: 10.1093/oxfordjournals.aob.a084081
[10] Araus J L, Brown H R, Febrero A, Bort J, Serret M D . Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environ, 1993,16:383-392.
doi: 10.1111/j.1365-3040.1993.tb00884.x
[11] Blum A . Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. J Exp Bot, 1985,36:432-440.
doi: 10.1093/jxb/36.3.432
[12] Grundbacher F J . The physiological function of the cereal awn. Bot Rev, 1963,29:366-381.
[13] Evans L T, Bingham J, Jackson P, SUTHERLAND J . Effect of awns and drought on the supply of photosynthate and its distribution within wheat ears. Ann Appl Biol, 1972,70:67-76.
[14] Elbaum R, Zaltzman L, Burgert I, Fratzl P . The role of wheat awns in the seed dispersal unit. Science, 2007,316:884-886.
doi: 10.1126/science.1140097 pmid: 17495170
[15] Sourdille P, Cadalen T, Gay G, Gill B, Bernard M . Molecular and physical mapping of genes affecting awning in wheat. Plant Breed, 2002,121:320-324.
doi: 10.1046/j.1439-0523.2002.728336.x
[16] Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S . RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica, 1998,101:91-95.
[17] Sourdille P, Cadalen T, Guyomarc’h H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S, Bernard M . An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 2003,106:530-538.
doi: 10.1258/ijsa.2009.008443 pmid: 12589554
[18] Yoshioka M ,Iehisa J C M, Ohno R, Kimura T, Enoki H, Nishimura S, Nasuda S, Takumi S. Three dominant awnless genes in common wheat: fine mapping, interaction and contribution to diversity in awn shape and length. PLoS One, 2017,12:e0176148.
doi: 10.1371/journal.pone.0176148 pmid: 5402986
[19] Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q, Wang A, Wang Z, Sang T, Wang Z, Han B . An-1 encodes a basic Helix-Loop-Helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013,25:3360-3376.
[20] Gu B, Zhou T, Luo J, Liu H, Wang Y, Shangguan Y, Zhu J, Li Y, Sang T, Wang Z, Han B . An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant, 2015,8:1635-1650.
doi: 10.1016/j.molp.2015.08.001 pmid: 26283047
[21] Hua L, Wang D R, Tan L, Fu Y, Liu F, Xiao L, Zhu Z, Fu Q, Sun X, Gu P, Cai H , McCouch S R,Sun C. LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell, 2015,27:1875-1888.
doi: 10.1105/tpc.15.00260 pmid: 26082172
[22] Toriba T, Hirano H Y . The DROOPING LEAF and OsETTIN2 genes promote awn development in rice. Plant J, 2014,77:616-626.
[23] Bessho-Uehara K, Wang D R, Furuta T, Minami A, Nagai K, Gamuyao R, Asano K ngeles-Shim R B, Shimizu Y, Ayano M, Komeda N, Doi K, Miura K, Toda Y, Kinoshita T, Okuda S, Higashiyama T, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y, Greenberg A, Wu J, Yasui H, Yoshimura A, Mori H, McCouch S R, Ashikari M , Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice,Proc Natl Acad Sci USA , 2016, 113: 8969-8974.
[24] Jin J, Hua L, Zhu Z, Tan L, Zhao X, Zhang W, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Sun C . GAD1 encodes a secreted peptide that regulates grain number, grain length and awn development in rice domestication Plant Cell, 2016: 28:2453-2463.
doi: 10.1105/tpc.16.00379 pmid: 27634315
[25] Yuo T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U, Sato K, Ichii M, Jobling S A, Taketa S . A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot, 2012,63:5223-5232.
[26] Müller K J, Romano N, Gerstner O, Garcia-Marotot F, Pozzi C, Salamini F, Rohde W . The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature, 1995,374:727-730.
doi: 10.1038/374727a0 pmid: 7715728
[27] Milner S G, Jost M, Taketa S, Mazón E R, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P, Schüler D, Sharma R, Pasam R K, Rutten T, Guo G, Xu D, Zhang J, Herren G, Müller T, Krattinger S G, Keller B, Jiang Y, González M Y, Zhao Y, Habekuß A, Färber S, Ordon F, Lange M, Börner A, Graner A, Reif J C, Scholz U, Mascher M, Stein N . Genebank genomics highlights the diversity of a global barley collection. Nat Genet, 2018.
doi: 10.1038/s41588-018-0266-x
[28] Mackay I J, Bansept-Basler P, Barber T, Bentley A R, Cockram J, Gosman N, Greenland A J, Horsnell R, Howells R , O’Sullivan D M,Rose G A,Howell P J. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3: Genes Genom Genet, 2014,4:1603-1610.
[29] Li H, Han Y, Guo X, Xue F, Wang C, Ji W . Genetic effect of locus B2 inhibiting awning in double-ditelosomic 6B of Triticum durum DR147. Genet Resour Crop Evol, 2015,62:407-418.
doi: 10.1007/s10722-014-0167-5
[30] Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak C J, Stein N, Choulet F, Distelfeld A , other 374 authors. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191.
[31] Stein N, Herren G, Keller B . A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum.Plant Breed, 2001,120:354-356.
doi: 10.1046/j.1439-0523.2001.00615.x
[32] da Maia L C, Palmieri D A, de Souza V Q, Kopp M M, de Carvalho F I F, de Oliveira A C . SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genom, 2008,2008:1-9.
doi: 10.1155/2008/412696 pmid: 18670612
[33] Lei L, Jiajun L, Xiang X, Changcheng L, Zefeng Y, Tao L . CAPS/dCAPS Designer: a web-based high-throughput dCAPS marker design tool. Sci China: Life Sci, 2018,61:992-995.
doi: 10.1007/s11427-017-9286-y pmid: 29656340
[34] Van Ooijen J W. JoinMap 4,Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV,>Wageningen, 2006, 33. 10. 1371.
[35] Voorrips R E . MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[36] Chen C, Xia R, Chen H, He Y . TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. BioRxiv, 2018. doi: https://doi.org/10.1101/289660.
[37] Ishii T, Ishikawa R. Domestication loci controlling panicle shape, seed shattering, and seed awning. In: Sasaki T, Ashikari M eds. Rice Genomics, Genetics and Breeding. Singapore: Springer Singapore, 2018. pp 207-221.
[38] Sang T, Ge S . The puzzle of rice domestication. J Integr Plant Biol, 2007,49:760-768.
doi: 10.1111/j.1744-7909.2007.00510.x
[39] 华磊 . 野生稻长、刺芒基因的克隆及其分子演化. 中国农业大学博士学位论文, 北京, 2015. pp 27-29.
Hua L . Cloning and Molecular Evolution of LABA1 Controlling Long Barbed Awns in Common Wild Rice (Oryza rufipogon Griff). PhD Dissertation of China Agricultural University, . Beijing China, 2015. pp 27-29 (in Chinese with English abstract).
[40] Michelmore R W, Paran I, Kesseli R V . Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921
[41] Bettgenhaeuser J, Krattinger S G . Rapid gene cloning in cereals. Theor Appl Genet, 2018, DOI 10.1007/s00122-018-3210-7.
doi: 10.1007/s00122-018-3210-7
[42] 刘志勇, 王道文, 张爱民, 梁翰文, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才 . 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018,19:430-434.
Liu Z Y, Wang D W, Zhang A M, Liang H W, Lyu H Y, Deng X D, Ge Y Q, Wei X, Yang W C . Current status and perspective of wheat genomics, genetics and breeding. J. Plant Gene Res, 2018,19:430-434 (in Chinese with English abstract).
[43] 吴建辉 . 基于BSR-Seq 和芯片技术的抗条锈基因Yr26候选基因分析及普通小麦成株期抗条锈QTL定位. 西北农林科技大学博士学位论文, 陕西杨凌, 2017. pp 47-51.
Wu J H . QTL Mapping for Adult-plant Resistance to Stripe Rush in Common Wheat and Candidate Gene Analysis of Yr26 Based on BSR-Seq and SNP Array. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2017. pp 47-51 (in Chinese with English abstract).
[44] 张传量, 简俊涛, 冯洁, 崔紫霞, 许小宛, 孙道杰 . 基于90K芯片标记的小麦芒长QTL定位. 中国农业科学, 2018,51:17-25.
Zhang C L, Jian J T, Feng J, Cui Z X, Xu X W, Sun D J . QTL Identification for awn length based on 90K array mapping in wheat. Sci Agric Sin, 2018,51:17-25 (in Chinese with English abstract).
[45] Josse E-M, Gan Y, Bou-Torrent J, Stewart K L, Gilday A D, Jeffree C E, Vaistij F E , Martínez-García J F,Nagy F, Graham I A, Halliday K J. A DELLA in disguise: SPATULA restrains the growth of the developing Arabidopsis seedling. Plant Cell, 2011,23:1337-1351.
[46] Cubas P, Lauter N, Doebley J, Coen E . The TCP domain: a motif found in proteins regulating plant growth and development. Plant J, 1999,18:215-222.
doi: 10.1046/j.1365-313X.1999.00444.x pmid: 10363373
[47] Martín-Trillo M, Cubas P . TCP genes: a family snapshot ten years later. Trends Plant Sci, 2010,15:31-39.
doi: 10.1016/j.tplants.2009.11.003 pmid: 19963426
[48] Huang T, Irish V F . Temporal control of plant organ growth by TCP transcription factors. Curr Biol, 2015,25:1765-1770.
doi: 10.1016/j.cub.2015.05.024 pmid: 26073137
[1] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[2] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[3] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[4] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[5] ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471.
[6] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[7] TIAN Biao, DING Shi-Lin, LIU Chao-Lei, RUAN Ban-Pu, JIANG Hong-Zhen, GUO Rui, DONG Guo-Jun, HU Guang-Lian, GUO Long-Biao, QIAN Qian, GAO Zhen-Yu. Genetic analysis of seedling root traits and fine mapping of the QTL qLRL4 for the longest root length in rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1863-1873.
[8] ZHOU Lian, LIU Chao-Xian, CHEN Qiu-Lan, WANG Wen-Qin, YAO Shun, ZHAO Zi-Kun, ZHU Si-Ying, HONG Xiang-De, XIONG Yu-Han, CAI Yi-Lin. Fine mapping and candidate gene analysis of maize defective kernel mutant dek54 [J]. Acta Agronomica Sinica, 2021, 47(10): 1903-1912.
[9] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[10] REN Meng-Meng, ZHANG Hong-Wei, WANG Jian-Hua, WANG Guo-Ying, ZHENG Jun. Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes [J]. Acta Agronomica Sinica, 2020, 46(7): 1016-1024.
[11] Li-Ping QIN,Er-Fei DONG,Yang BAI,Lian ZHOU,Lan-Yang REN,Ren-Feng ZHANG,Chao-Xian LIU,Yi-Lin CAI. Genetic analysis and molecular characterization of tasselseed mutant ts12 in maize [J]. Acta Agronomica Sinica, 2020, 46(5): 690-699.
[12] ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502.
[13] Xin-Ran SONG, Shu-Ting HU, Kai ZHANG, Ze-Jin CUI, Jian-Sheng LI, Xiao-Hong YANG, Guang-Hong BAI. Phenotypic analysis and fine mapping of dek101 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1831-1838.
[14] ZHANG Zhi-Hao, WANG Jun, LIU Zhang-Xiong, QIU Li-Juan. Mapping of an incomplete dominant gene controlling multifoliolate leaf by BSA-Seq in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1839-1849.
[15] SUN Qi, ZHAO Zhi-Chao, ZHANG Jin-Hui, ZHANG Feng, CHENG Zhi-Jun, ZOU De-Tang. Genetic analysis and fine mapping of a sheathed panicle mutant sui2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1734-1742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!