欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 798-805.doi: 10.3724/SP.J.1006.2019.84110

• 研究简报 • 上一篇    

52份豌豆种质萌发期耐铝毒性的综合评价与筛选

崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元()   

  1. 西南大学农学与生物科技学院, 重庆 400715
  • 收稿日期:2018-08-21 接受日期:2019-01-12 出版日期:2019-05-12 发布日期:2019-02-19
  • 通讯作者: 周清元 E-mail:zhouqy2005@163.com
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-12);重庆市社会事业与民生保障科技创新项目(cstc2015shmszx80026)

Screening and comprehensive evaluation of aluminum-toxicity tolerance during germination stage in 52 varieties (lines) of pea germplasm

Cui CUI,Chuang CHENG,Yu-Feng ZHAO,Huan-Huan GAO,Rui-Li WANG,Liu-Yan WANG,Qing-Yuan ZHOU()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
  • Received:2018-08-21 Accepted:2019-01-12 Online:2019-05-12 Published:2019-02-19
  • Contact: Qing-Yuan ZHOU E-mail:zhouqy2005@163.com
  • Supported by:
    This study was supported by the China Agriculture Research System(CARS-12);the Science and Technology Committee of Chongqing(cstc2015shmszx80026)

摘要:

随着土壤酸化的日益加重, 铝毒成为影响作物种子萌发质量以及产量的重要胁迫因子之一。本研究采用单项耐铝毒系数(AC值)、综合耐铝毒系数(CAC值)、平均隶属函数值(ASF值)、耐性综合评价值(A值)等指标及相关分析、主成分分析、聚类分析和逐步回归分析等方法, 综合评价豌豆种质萌发期铝毒耐性, 建立综合筛选评价体系, 并筛选萌发期耐铝毒豌豆种质。利用筛选出的适宜浓度40 mg L -1 Al 3+处理52份豌豆品种(系)种子, 结果显示, 萌发期8个相关性状在处理组及对照组品种间均存在显著差异, 遗传多样性指数分别介于1.43~2.03和1.51~2.06之间。基于AC值聚类分析, 52份豌豆种质可被分为3个耐性级别, 其中, 第I级含2份, 为耐铝毒品种(系); 第II级含19份, 为敏感品种(系); 第III级含31份, 为铝毒极敏感性品种(系)。利用豌豆种子发芽率、发芽势、发芽指数、芽长、根长、芽干重、根干重7项指标, 结合最优回归方程可初步鉴定豌豆萌发期耐铝毒特性。通过综合评价和聚类分析, 筛选出萌发期铝毒耐性极强的种质C175和C145, 可作为豌豆铝毒耐性育种和耐性机制研究的重要资源。

关键词: 豌豆, 萌发期, 耐铝毒特性, 综合评价, 种质资源筛选

Abstract:

With increasing acidification of soil, aluminum toxicity has become one of the important stress factors affecting seed germination quality and crop yield. The purpose of this study is to explore the characteristics of aluminum toxicity tolerance in different genotypes of Pisum sativum, and establish the comprehensive evaluation system for screening and breeding new varieties with aluminum toxicity tolerance. The identification of tolerance at germination stage was performed according to the comprehensive tolerance coefficient of aluminum toxicity (CAC) value, the average subordinate function value (ASF value), the comprehensive evaluation value of aluminum toxicity tolerance (A-value) in correlation analysis, frequency analysis, principal component analysis, cluster analysis and stepwise regression analysis. Fifty-two pea varieties collected from different places were treated with 40 mg L -1 Al 3+ screened in the pretest. There were significant differences between treatment and control groups in germination rate, germination energy, germination index, root length, bud length, root dry weight, bud dry weight, root-shoot ratio, and the genetic diversity index ranging from 1.43-2.03 and 1.51-2.06, respectively, showing extensive genetic variation. Cluster analysis was carried out based on A value, exhibiting that the tested cultivars were roughly divided into groups with three aluminum toxicity tolerance grades. The first group including two varieties is tolerant to aluminum toxicity, the second group including 19 varieties is sensitive to aluminum toxicity, and the last group containing 31 other varieties is very sensitive to aluminum toxicity. Combined with the optimal regression equation, seven indexes of pea seed germination rate, germination potential, germination index, bud length, root length, bud dry weight and root dry weight were used to comprehensively evaluate and identify the aluminum toxicity tolerance of pea during germination period. Through comprehensive evaluation and cluster analysis, germplasm C175 and C145 were screened out with strong tolerance to aluminum toxicity in germinating stage, which can be used as important resources for breeding near varieties and studying the mechanism of tolerance to aluminum toxicity in pea.

Key words: pea, germination period, aluminum toxicity tolerance, comprehensive evaluation, germplasm resources screening

表 1

参试品种(系)及其来源"

编号
Code
品种(系)
Variety (line)
来源
Origin
编号
Code
品种(系)
Variety (line)
来源
Origin
编号
Code
品种(系)
Variety (line)
来源
Origin
C001 白豌豆 重庆白市驿 C103 荷兰豆 河北香河 C146 意大利新品种 四川成都
C002 白豌豆 山东寿光 C104 奥珍食荚菜豌豆 河北香河 C147 604豌豆 重庆南川
C003 朱砂红1 山东寿光 C105 永盛珍宝 河北香河 C150 地方品种6 重庆南川
C023 中豌5号 河北香河 C106 地方品种1 内蒙古赤峰 C152 地方品种7 重庆北碚
C032 甜豆 江西九江 C107 地方品种2 山东即墨 C154 朱砂红2# 重庆北碚
C039 苏豌1号 江苏南通 C108 美国肥仔豌豆苗 广东广州 C155 地方品种8 重庆北碚
C040 苏豌2号 江苏南通 C109 台中11号 广东广州 C157 地方品种9 重庆白市驿
C041 08-064 江苏南通 C110 台湾长寿豌豆 宁夏银川 C158 黑眼豌豆# 重庆白市驿
C051 特选11号 江西九江 C117 无须豌豆尖3 四川仁寿 C159 地方品种10 重庆合川
C052 双荚饶平玻璃豆 广西南宁 C136 食荚大菜豌6号 四川成都 C163 地方品种11 四川仁寿
C054 翠珍甜豌豆 广东广州 C137 食荚大菜豌1号 四川成都 C170 浙豌1号 浙江安吉
C055 高级甜脆食荚豆 广东广州 C138 无须豆尖1号 四川成都 C173 软荚荷兰豆 广东广州
C056 韩国甜脆豆 广东广州 C139 成豌7号 四川成都 C174 UY039 广东广州
C078 苏豌6号 江苏南通 C140 成豌8号 四川成都 C175 UY099 广东广州
C079 奇珍76 江苏南通 C141 818荷兰豆 福建福州 C177 甜脆双荚荷兰豆 广东广州
C094 中豌9号 河北香河 C142 地方品种4 四川仁寿 C178 麦豆 广东广州
C095 中豌10号 河北香河 C144 地方品种5 四川仁寿
C096 中豌4号 河北香河 C145 食荚大菜豌# 四川仁寿

表2

不同浓度的铝胁迫处理对豌豆萌发的影响"

处理
Treatment
(mg L-1)
C154 C145 C158
芽长
BL(cm)
根长
RL (cm)
芽长
BL (cm)
根长
RL (cm)
芽长
BL (cm)
根长
RL (cm)
0 4.10±0.03 ab 3.56±0.14 a 2.90±0.09 a 2.56±0.19 b 4.32±0.01 a 2.72±0.04 b
20 4.33±0.41 a 2.82±0.11 b 3.02±0.04 a 3.21±0.04 a 4.55±0.04 a 3.01±0.15 a
40 4.50±0.03 a 1.59±0.02 c 2.98±0.04 a 2.60±0.07 b 3.94±0.23 b 2.76±0.12 b
80 1.73±0.14 b 1.29±0.04 d 2.91±0.05 a 1.64±0.02 c 2.24±0.03 c 1.82±0.01 c
160 0.19±0.03 c 1.08±0.01d e 0.13±0.01 b 1.24±0.01 d 0.34±0.05 d 1.37±0.01 d

表3

铝胁迫条件下豌豆种质各指标测定值及其均值差异性分析"

参数
Parameter
发芽率
GR (%)
发芽势
GE (%)
发芽指数
GI
根长
RL (cm)
芽长
BL (cm)
根干重
RDW (g)
芽干重
SDW (g)
根冠比
RSR
对照CK
均值Mean 85.34** 81.92** 27.99** 4.21** 2.87** 0.01** 0.01** 1.12**
最大值Max. 100.00 100.00 43.67 7.15 4.63 0.02 0.02 3.40
最小值Min. 30.00 22.50 7.68 0.81 0.32 0 0 0.56
变异系数CV (%) 19.04 22.58 27.26 34.72 33.63 34.82 41.24 38.21
遗传多样性指数H° 1.51 1.61 2.04 2.04 2.01 2.06 2.02 1.69
处理Treatment
均值Mean 88.65** 85.05** 29.67** 2.85** 2.94** 0.01** 0.01** 0.71**
最大值Max 100.00 100.00 43.97 5.30 4.24 0.02 0.03 2.53
最小值Min 27.50 22.50 7.68 0.66 0.36 0 0 0.45
变异系数CV (%) 15.23 19.27 25.04 29.98 27.69 32.24 36.89 43.03
遗传多样性指数H° 1.54 1.55 1.94 2.02 2.00 1.95 2.01 1.43

表4

各性状耐铝系数(AC值)相关系数矩阵"

参数
Parameter
发芽率
GR
发芽势
GE
发芽指数
GI
根长
RL
芽长
BL
根干重
RDW
芽干重
SDW
根冠比
RSR
发芽率GR 1
发芽势GE 0.91** 1
发芽指数GI 0.93** 0.96** 1
根长RL 0.52** 0.55** 0.56** 1
芽长BL 0.67** 0.69** 0.71** 0.82** 1
根干重RDW 0.62** 0.68** 0.67** 0.86** 0.89** 1
芽干重SDW 0.62** 0.64** 0.66** 0.80** 0.97** 0.91** 1
根冠比RSR -0.21 -0.15 -0.20 -0.20 -0.48 -0.10 -0.45 1

表5

52份豌豆的2个主成分因子得分、综合评价值(A值)及其预测值"

编号Code PC1 PC2 A值
A-value
排序
Rank
P 编号
Code
PC1 PC2 A值
A-value
排序
Rank
P
C001 -1.58 -0.59 -1.19 47 -1.20 C117 1.13 -0.30 0.74 9 0.75
C002 -0.88 1.28 -0.43 28 -0.43 C136 -0.25 -1.48 -0.39 26 -0.38
C003 -0.21 -0.03 -0.15 21 -0.16 C137 0.02 -1.09 -0.14 18 -0.15
C023 -0.10 -0.51 -0.15 20 -0.16 C138 0.08 -0.27 0.02 17 0.02
C032 -1.81 0.40 -1.21 48 -1.21 C139 -0.35 -0.61 -0.33 25 -0.33
C039 -0.27 -0.56 -0.27 23 -0.25 C140 -1.00 0.07 -0.69 37 -0.67
C040 -1.12 -0.42 -0.84 42 -0.84 C141 -0.79 0.85 -0.43 29 -0.42
C041 -0.46 0.66 -0.22 22 -0.22 C142 -0.73 -0.06 -0.52 31 -0.53
C051 -1.28 -0.31 -0.93 44 -0.94 C144 -1.79 0.61 -1.16 46 -1.16
C052 -1.39 2.32 -0.64 34 -0.62 C145 7.50 -2.72 4.85 2 4.85
C054 -1.13 0.71 -0.68 36 -0.68 C146 0.80 0.87 0.68 10 0.68
C055 1.19 1.12 0.99 6 0.99 C147 -0.93 -0.02 -0.65 35 -0.66
C056 -2.70 2.90 -1.46 49 -1.46 C150 -0.74 -0.54 -0.59 33 -0.61
C078 -0.19 -0.06 -0.14 19 -0.14 C152 5.24 1.74 3.90 3 3.90
C079 -1.48 2.33 -0.70 39 -0.69 C154 0.59 -1.00 0.27 13 0.28
C094 0.82 -0.03 0.57 11 0.57 C155 -3.54 -1.18 -2.64 52 -2.64
C095 0.19 -0.50 0.06 16 0.07 C157 -0.90 -0.48 -0.70 38 -0.69
C096 -0.64 -0.59 -0.53 32 -0.53 C158 –0.69 0.46 -0.42 27 -0.43
C103 -2.51 0.72 -1.64 50 -1.64 C159 2.51 -0.14 1.73 4 1.73
C104 2.67 -1.53 1.64 5 1.65 C163 -2.46 0.31 -1.67 51 -1.67
C105 1.12 0.35 0.83 7 0.82 C170 1.14 0.14 0.82 8 0.82
C106 -1.18 -0.45 -0.89 43 -0.88 C173 -1.52 -0.39 -1.11 45 -1.12
C107 -0.34 -0.60 -0.33 24 -0.32 C174 0.51 -0.03 0.35 12 0.35
C108 -0.40 -1.48 -0.50 30 -0.50 C175 11.11 2.43 8.10 1 8.10
C109 0.57 -1.57 0.17 14 0.18 C177 0.26 -0.15 0.16 15 0.15
C110 -1.18 0.30 -0.78 41 -0.78 C178 -0.92 -0.87 -0.77 40 -0.77

图 1

52份豌豆种质资源基于AC值的聚类分析图"

[1] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K, Vitousek P M, Zhang F S . Significant acidification in major Chinese croplands. Science, 2010,327:1008-1010.
doi: 10.1126/science.1182570
[2] Arenhart R A , De Lima J C, Pedron M, Carvalho F E L, Da Silveira J A G, Rosa S B, Caverzan A, Andrade C M B, Schunemann M, Margis R, Margis-Pinheiro M . Involvement of ASR genes in aluminum tolerance mechanisms in rice. Plant Cell Environ, 2013,36:52-67.
doi: 10.1111/pce.2013.36.issue-1
[3] 舒畅 . 耐铝毒水稻(Oryza sativa L.)种质资源的筛选及不同形态N素对水稻幼苗耐铝性的影响. 南京农业大学硕士学位论文, 江苏南京, 2011.
Shu C . The Screening of the Rice Germplasm Resources on Al Tolerance and the Impact of Different Forms of N Element on Al Tolerance in Rice (Oryza sativa L.) . MS Thesis of Nanjing Agriculture University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract).
[4] 刘武 . 玉米抗铝毒自交系的筛选、生理检测和基因芯片分析. 四川农业大学硕士学位论文, 四川雅安, 2013.
Liu W . Screening, Physiological Detection and Gene Chip Analysis of Maize Inbred Lines Resistant to Aluminum Toxicity. MS Thesis of Sichuan Agriculture University, Ya’an, Sichuan, China, 2013 (in Chinese with English abstract).
[5] 齐波, 赵团结, 盖钧镒 . 中国大豆种质资源耐铝毒性的变异特点及优选. 大豆科学, 2007,26:813-819.
Qi B, Zhao T J, Gai J Y . Characterization of variation and identification of elite accessions of aluminum toxin tolerance soybean germplasm in China. J Soybean Sci. 2007,26:813-819 (in Chinese with English abstract).
[6] 熊洁, 邹小云, 陈伦林, 李书宇, 邹晓芬, 宋来强 . 油菜苗期耐铝基因型筛选和鉴定指标的研究. 中国农业科学, 2015,48:3112-3120.
Xiong J, Zou X Y, Chen L L, Li S Y, Zou X F, Song L Q . Screening of rapeseed genotypes with aluminum tolerance at seedling stage and evaluation of selecting indices. Sci Agric Sin, 2015,48:3112-3120 (in Chinese with English abstract).
[7] 胡萃, 刘强, 龙婉婉, 李芙蓉, 李荣刚 . 铝胁迫对芝麻种子萌发和根系生长的影响. 江苏农业科学, 2009, ( 3):60-62.
Hu C, Liu Q, Long W W, Li F R, Li R G . Effects of aluminum on the seed germinating and root growth in sesame ( Sesamum indicum L.). Jiangsu Agric Sci, 2009, ( 3):60-62 (in Chinese with English abstract).
[8] 宗绪晓, 关建平, 王述民, 刘庆昌 . 中国豌豆地方品种SSR标记遗传多样性分析. 作物学报, 2008,34:1330-1338.
Zong X X, Guan J P, Wang S M, Liu Q C . Genetic diversity among Chinese pea ( Pisum sativum L.) landraces revealed by SSR markers. Acta Agron Sin, 2008,34:1330-1338 (in Chinese with English abstract).
[9] 李玲, 沈宝宇, 张天静, 杨涛, 刘荣, 宗绪晓 . 豌豆种质资源芽期耐旱性评价及耐旱种质筛选. 植物遗传资源学报, 2017,18:778-785.
Li L, Shen B Y, Zhang T J, Yang T, Liu R, Zong X X . Evaluation and screening of pea ( Pisum sativum) germplasm resources for drought resistance during germination stage. J Plant Genet Resour, 2017,18:778-785 (in Chinese with English abstract).
[10] 刘安芳, 伍莲 . 生物统计学. 重庆: 西南师范大学出版社, 2013. pp 279-285.
Liu A F, Wu L. Biostatistics. Chongqing: Southwest China Normal University Press, 2013. pp 279-285(in Chinese).
[11] 唐启义, 冯明光 . DPS 数据处理系统: 实验设计统计分析及数据挖掘. 北京: 科学出版社, 2007. pp 636-644, 682-690, 1027-1036.
Tang Q Y, Feng M G. DPS Data Processing System: Statistical Analysis and Data Mining of Experimental Design. Beijing: Science Press, 2007. pp 636-644, 682- 690, 1027-1036(in Chinese).
[12] Keylock C J . Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy. OIKOS, 2010,109:203-207.
[13] 汪灿, 周棱波, 张国兵, 张立异, 徐燕, 高旭, 姜讷, 邵明波 . 薏苡种质资源苗期抗旱性鉴定及抗旱指标筛选. 中国农业科学, 2017,50:2872-2887.
Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B . Drought resistance identification and drought resistance indices screening of Job’s Tears ( Coxi lacryma-jobi L.) germplasm resources at seedling stage. Sci Agric Sin, 2017,50:2872-2887 (in Chinese with English abstract).
[14] Gupta N, Gaurav S S, Kumar A . Molecular basis of aluminum toxicity in plants: a review. Am J Plant Sci, 2013,4:21-37.
[15] Korir P C. 大豆耐铝毒的鉴定、遗传和QTL分析. 南京农业大学博士学位论文, 江苏南京, 2010.
Korir P C . Evaluation, Inheritance and QTL Analysis of Aluminum Tolerance in Soybean [Glycine max (L.) Merr.]. PhD Dissertation of Nanjing Agricultural University. Nanjing, Jiangsu, China, 2010 (in Chinese with English abstract).
[16] Ouma E, Ligeyo D, Matonyei T, Agalo J, Were B, Too E, Onkware A, Gudu S, Kisinyo P, Nyangweso P . Enhancing maize grain yield in acid soils of western kenya using aluminum tolerance germplasm. J Agric Sci Technol, 2013,3:33-46.
[17] Konzak C F, Polle E, Kittrick J A. Screening several crops for aluminum tolerance. In: Workshop on plant adaptation to mineral stress in problem soils. Maryland: Cornell University Press, 1976. pp 311-327.
[18] Rosado R D S, Fialho G S, Dias B A S, Rosado T B, Martinez H E P, Laviola B G . Screening Jatropha genotypes for aluminum tolerance using the solution paper method.Semina: Ciênc Agrár, 2012, 33:1273-1280.
[19] Martins L D, Lopes J C, Laviola B G, Colodetti T V, Rodrigues W N . Selection of genotypes of Jatropha curcas L. for aluminum tolerance using the solution-paper method. IDESIA, 2013,31:81-86.
[20] Kerridge M, Poschenrieder C, Barceló J . Monitoring of aluminum-induced inhibition of root elongation in four maize cultivars differing in tolerance to aluminum and proton toxicity. Physiol Planta, 2010, 93:265-271.
[21] 陈新, 张宗文, 吴斌 . 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选. 中国农业科学, 2014,47:2038-2046.
Chen X, Zhang Z W, Wu B . Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of naked oat ( Avena nuda L.) at germination stage. Sci Agric Sin, 2014,47:2038-2046 (in Chinese with English abstract).
[22] Heenan D P, Lewin L G , McCaffery D W . Salinity tolerance in rice varieties at different growth stages. Aust J Exp Agric, 1988,28:343-349.
doi: 10.1071/EA9880343
[1] 张春宵,李淑芳,金峰学,刘文平,李万军,刘杰,李晓辉. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4): 508-521.
[2] 苑乂川,陈小雨,李明明,李萍,贾亚涛,韩渊怀,邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[3] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[4] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
[5] 王倩,崔翠,叶桑,崔明圣,赵愉风,林呐,唐章林,李加纳,周清元. 甘蓝型油菜种子萌发期耐苯磺隆种质筛选与综合评价[J]. 作物学报, 2018, 44(8): 1169-1184.
[6] 李龙,毛新国,王景一,昌小平,柳玉平,景蕊莲. 小麦种质资源抗旱性鉴定评价[J]. 作物学报, 2018, 44(7): 988-999.
[7] 余斌,杨宏羽,王丽,刘玉汇,白江平,王蒂,张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价[J]. 作物学报, 2018, 44(01): 63-74.
[8] 汪灿,周棱波,张国兵,张立异,徐燕,高旭,姜讷,邵明波. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2017, 43(09): 1381-1394.
[9] 张楚,张永清,路之娟,刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标[J]. 作物学报, 2017, 43(08): 1205-1215.
[10] 王小婷,黄锁,徐兆师,李连城,马有志,陈明,闵东红. 豌豆终止子rbc-T在转基因小麦研究中的应用[J]. 作物学报, 2017, 43(08): 1254-1258.
[11] 徐宁,陈冰嬬,王明海,包淑英,王桂芳,郭中校. 绿豆品种资源萌发期耐碱性鉴定[J]. 作物学报, 2017, 43(01): 112-121.
[12] 吴奇,周宇飞,高悦,张姣,陈冰嬬,许文娟,黄瑞冬. 不同高粱品种萌发期抗旱性筛选与鉴定[J]. 作物学报, 2016, 42(08): 1233-1246.
[13] 王海岗,贾冠清,智慧,温琪汾,董俊丽,陈凌,王君杰,曹晓宁,刘思辰,王纶,乔治军,刁现民. 谷子核心种质表型遗传多样性分析及综合评价[J]. 作物学报, 2016, 42(01): 19-30.
[14] 张慧,顾世梁,李韬. 一种新的符合度算法及其应用[J]. 作物学报, 2016, 42(01): 141-148.
[15] 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆品种苗期抗旱性鉴定[J]. 作物学报, 2015, 41(06): 963-971.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王东;于振文;王旭东. 硫素对冬小麦籽粒蛋白质积累的影响[J]. 作物学报, 2003, 29(06): 878 -883 .
[2] 赵翔;汪延良;王亚静;王西丽;张骁. 盐胁迫条件下外源Ca2+对蚕豆气孔运动及质膜K+通道的调控[J]. 作物学报, 2008, 34(11): 1970 -1976 .
[3] 王育东. 高赖氨酸玉米单粒鉴别技术初报——(Ⅰ)—Folin 酚比色法[J]. 作物学报, 1986, 12(02): 117 -120 .
[4] 李常保;刘艳华;杜长青;孔令让. 普通小麦与粗山羊草正反交育性机理的胚胎学研究[J]. 作物学报, 2002, 28(02): 170 -174 .
[5] 王玮;张枫;李德全. 外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响[J]. 作物学报, 2002, 28(01): 121 -126 .
[6] . 通过茎尖培养获得去除类菌质体的甘薯植株及其验证技术的研究[J]. 作物学报, 1985, 11(03): 191 -198 .
[7] 王明理. T型杂交小麦品质及农艺性状的研究——Ⅰ.杂种优势和配合力[J]. 作物学报, 1985, 11(03): 146 -158 .
[8] 魏海燕;张洪程;戴其根;霍中洋;许轲;杭杰;马群;张胜飞;张庆;刘艳阳. 不同水稻氮利用效率基因型的物质生产与积累特性[J]. 作物学报, 2007, 33(11): 1802 -1809 .
[9] 关荣霞;郭娟娟;常汝镇;邱丽娟. 国外种质对中国大豆育成品种遗传贡献的分子证据[J]. 作物学报, 2007, 33(09): 1393 -1398 .
[10] 方先文;姜东;戴廷波;荆奇;曹卫星. 小麦籽粒总淀粉及支链淀粉含量的遗传分析[J]. 作物学报, 2003, 29(06): 925 -929 .