欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (6): 832-843.doi: 10.3724/SP.J.1006.2020.94154

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

铝毒胁迫下甘蓝型油菜种子萌发期相关性状的QTL定位

王瑞莉,王刘艳,叶桑,郜欢欢,雷维,吴家怡,袁芳,孟丽姣,唐章林,李加纳,周清元(),崔翠()   

  1. 西南大学农学与生物科技学院, 重庆 400715
  • 收稿日期:2019-10-16 接受日期:2020-01-15 出版日期:2020-06-12 网络出版日期:2020-02-19
  • 通讯作者: 周清元,崔翠
  • 作者简介:E-mail: 1525731297@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0100500);国家现代农业产业技术体系建设专项(CARS-12);重庆市技术创新与应用发展项目(cstc2019jscx-msxmX0383)

QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress

WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan(),CUI Cui()   

  1. College of Agronomy and Biotechnology, Southwestern University, Chongqing 400715, China
  • Received:2019-10-16 Accepted:2020-01-15 Published:2020-06-12 Published online:2020-02-19
  • Contact: Qing-Yuan ZHOU,Cui CUI
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100500);China Agriculture Research System(CARS-12);Technological Innovation and Application Development in Chongqing(cstc2019jscx-msxmX0383)

摘要:

随着土壤酸化的日益加重, 铝毒已成为影响作物种子萌发质量以及作物产量的重要胁迫因子之一。作物耐铝相关性状的QTL定位和候选基因筛选已有许多报道, 但铝胁迫下甘蓝型油菜萌发期相关性状的QTL定位报道较少。本文以80 μg mL -1的铝胁迫浓度处理重组自交系(10D130×中双11号)群体进行种子萌发试验, 处理3 d时调查发芽势, 7 d时调查发芽率, 测定其根长、芽长和干重, 并计算各性状相对值。基于6K SNP芯片, 结合高密度遗传连锁图谱对油菜萌发期的5个性状进行QTL定位, 共检测到23个QTL。其中与相对发芽势、相对发芽率、相对根长、相对芽长和相对干重相关的QTL分别有9个、1个、4个、5个和4个, 覆盖了A、C基因组, LOD值介于3.00~5.26, 可解释的表型变异为7.70%~13.10%。根据各QTL置信区间序列筛选, 与铝胁迫相关的候选基因共30个。ALMT1基因和MATE基因与有机酸的合成和分泌有关, 主要通过苹果酸、柠檬酸和草酸等有机酸的分泌来增强植物的耐铝性; STOP1基因、NAC基因和RAP2.4基因均属于转录激活因子, 通过诱导耐铝基因的表达增强植株的抗性; ABC转运蛋白、膜蛋白转运体、GDSL脂肪酶通过减少有毒物质在质膜上的积累或将有毒物质排出体外等途径增强植物的耐铝性; 过氧化物酶和细胞色素P450均属于氧化胁迫相关基因, 具有防止植物细胞氧化损伤、抵御逆境胁迫的功能; 另外, 还有部分编码逆境蛋白的基因, 均在各种胁迫反应中起重要作用。本研究的结果将为培育耐铝油菜品种及后续基因的功能研究提供理论依据。

关键词: 甘蓝型油菜, 萌发期, 单核苷酸多态性, 铝胁迫, QTL, 候选基因筛选

Abstract:

With the aggravation of soil acidification, aluminum toxicity has become one of the important stress factors that affect crop seed germination quality and crop yield. There have been many reports on QTL mapping and candidate gene screening for aluminum tolerance related traits in crops, but few reports on QTL mapping for aluminum tolerance during germination in Brassica napus L. The seed germination test was conducted on the recombinant inbred line population treated with 80 μg mL -1 aluminum solution and with distilled water as control. Germination potential was investigated at 3 d, germination rate was investigated at 7 d, root length, bud length and dry weight were measured, and the relative values of various characters were calculated. Based on 6K SNP chip and combined with high density genetic linkage map, we detected 23 QTLs for five traits in rape germination period. QTLs for relative germination potential, relative germination rate, relative root length, relative bud length and relative dry weight were 9, 1, 4, 5, and 4 respectively, covering A and C genomes, with LOD values from 3.00 to 5.26, and interpretable phenotypic variation from 7.70% to 13.10%. According to the confidence interval sequence of each QTL, 30 candidate genes related to aluminum stress were screened. ALMT1 gene and MATE gene are related to the synthesis and secretion of organic acids, which mainly enhance the aluminum tolerance of plants through the secretion of organic acids such as malic acid, citric acid and oxalic acid. STOP1 gene, NAC gene and RAP2.4 gene all belong to transcription activation factors, which enhance the resistance of plants by inducing the expression of aluminum tolerance genes. ABC transporter, membrane protein transporter, GDSL lipase enhance aluminum tolerance of plants by reducing accumulation of toxic substances on plasma membrane or discharging toxic substances out of body. Peroxidase and cytochrome P450 are genes related to oxidative stress, which have the functions of preventing oxidative damage of plant cells and resisting stress. At the same time, many genes encoding stress proteins were found, which play an important role in various stress reactions. The results of this study provide a theoretical basis for the cultivation of aluminum-tolerant rape varieties and the functional research of subsequent genes.

Key words: Brassica napus L., germination, single nucleotide polymorphism, aluminum stress, QTL, candidate gene

图1

不同浓度铝对油菜相对根长的影响"

表1

重组自交系群体及亲本油菜在铝胁迫环境下各性状的分布特征"

相关性状
Relative trait
亲本 Parents RIL群体 RIL population
ZS11 10D130 均值Mean 极差Range 标准差SD 变异系CV(%)
相对发芽势 RGV 0.982 0.967 1.032** 1.667 0.230 22.3
相对发芽率 RGR 0.983 0.982 1.043** 1.030 0.140 13.4
相对根长 RRL 0.621 0.472 0.465** 0.733 0.146 31.3
相对芽长 RBL 0.955 0.987 0.994** 1.158 0.178 17.9
相对干重 RDW 0.987 0.990 0.920** 1.125 0.175 19.0

图2

最适铝胁迫处理下油菜品系各性状相对值的频率分布图 RGV: 相对发芽势; RGR: 相对发芽率; RRL: 相对根长; RBL: 相对芽长; RDW: 相对干重。"

表2

油菜种子铝胁迫处理后各性状间的相关性分析"

测定指标Index 相对发芽势RGV 相对发芽率RGR 相对根长RRL 相对芽长RBL 相对干重RDW
相对发芽势RGV 1
相对发芽率RGR 0.404** 1
相对根长RRL 0.101 0.053 1
相对芽长RBL -0.108 -0.109 0.062 1
相对干重RDW -0.148* -0.252** -0.075 -0.020 1

图3

甘蓝型油菜耐铝胁迫QTL在SNP连锁群上的分布情况 RGV: 相对发芽势; RGR: 相对发芽率; RRL: 相对根长; RBL: 相对芽长; RDW: 相对干重。"

表3

利用复合区间作图法检测到油菜萌发期在铝胁迫下的QTL"

性状
Trait
QTL 标记区间
Marker interval
LOD 表观贡献率
PVE (%)
加性效应
Additive effect
置信区间
Confidence interval (cM)
相对发芽势RGV qRGV-A01-1 AX-177912497-AX-179306831 4.33 10.90 -0.0282 37.410-43.975
qRGV-A01-2 AX-182171878-AX-182150271 3.90 9.90 -0.0217 141.657-155.683
qRGV-A03-1 AX-95507427-AX-177832788 4.20 10.60 0.0064 179.611-222.454
qRGV-A03-2 AX-95504605-AX-177831059 3.74 9.50 0.0033 93.552-97.113
qRGV-A03-3 AX-95681175-AX-95665748 3.23 8.20 -0.0236 121.496-124.157
qRGV-A08 AX-95506362-AX-182175648 5.26 13.10 -0.0402 8.146-12.834
qRGV-C01-1 AX-182087666-AX-95638042 3.43 8.70 -0.0123 160.226-163.199
qRGV-C01-2 AX-177910610-AX86223402 3.00 7.70 -0.0072 1.826-6.674
qRGV-C03 AX-95665064-AX-105309102 4.17 10.50 -0.0022 6.340-10.132
相对发芽率RGR qRGR-C04 AX-95636072-AX-182161180 3.12 8.00 0.0329 34.378-38.45
相对根长RRL qRRL-A03-1 AX-182087696-X-182147367 3.14 8.00 -0.0349 144.851-146.986
qRRL-A03-2 AX-95509347-AX-95509401 3.11 8.00 -0.0366 207.579-211.5
qRRL-A09 AX-95635531-AX-182177329 3.36 8.60 -0.0348 59.898-79.773
qRRL-C03 AX-95662770-AX-177910217 3.23 8.20 -0.0274 218.487-221.508
相对芽长RBL qRBL-A03 AX-95636441-AX-177911244 3.12 8.00 -0.0038 32.513-47.814
qRBL-A08-1 AX-95663434-AX-95506362 3.34 8.50 -0.0158 2.275-8.146
qRBL-A09-1 AX-177912380-AX-177829538 4.07 10.30 0.0216 178.878-188.216
qRBL-A09-2 AX-177832428-AX-182127697 3.53 9.00 0.0224 6.106-15.138
qRBL-C08 AX-95665611-AX-86227922 4.75 11.90 0.0115 94.661-132.074
相对干重RDW qRDW-A09-1 AX-182158057-AX-182154686 3.60 7.80 0.0196 127.938-128.931
qRDW-A09-2 AX-95682972-AX-182133711 3.05 9.10 0.0067 275.002-280.965
qRDW-A10-1 AX-182087443-AX-65636575 4.09 10.30 0.0050 129.25-131.783
qRDW-A10-2 AX-177829985-AX-182146546 3.90 9.90 0.0036 160.157-160.711

表4

甘蓝型油菜基因组中QTL置信区间候选基因与拟南芥逆境胁迫相关基因的比对"

性状
Trait
物理区间
Physical interval
甘蓝型油菜基因编号
Gene ID in B. napus
基因登录号
Gene accession
基因注释
Gene annotation
参考文献
Reference
相对发芽势RGV 18835423-22795371 BnaA01g26740D AT3G18440 Aluminum-activated malate transporter 9 (ALMT9) [14]
20061150-26605700 BnaA03g57410D AT3G06130 Heavy metal-associated domain (HMA) [23]
BnaA03g39800D AT5G61240 Leucine-rich repeat (LRR) family protein [24]
14408144-15038093 BnaA03g03270D AT5G11250 Disease resistance protein (TIR-NBS-LRR class)
BnaA03g14650D AT2G31660 Super sensitive to ABA and drought2 (SAD2) [25]
11435749-11630658 BnaA03g13730D AT2G30140 UDP-Glycosyltransferase superfamily protein [26]
1012939-2022032 BnaA08g30510D AT4G19960 K+ uptake permease 9 (KUP9) [27]
BnaA08g19190D AT1G24620 EF hand calcium-binding protein family (CML25) [28]
BnaA08g26970D AT1G08430 Aluminum-activated malate transporter 1 (ALMT1)
676816-1129401 BnaC01g23380D AT3G51490 Metallothionein 3 (MT3) [29]
BnaC01g01650D AT4G37270 Response to toxic substance (HMA)
3925832-4284222 BnaC03g08920D AT5G18370 Disease resistance protein (TIR-NBS-LRR class) family [30]
相对发芽率RGR 3627529-9882343 BnaC04g12580D AT2G27780 Transcription factor IIS family protein [31]
相对根长RRL 17577932-2005963 BnaA03g35920D AT3G20750 Zinc ion binding (GATA) [32]
24406111-29734315 BnaA03g35900D AT5G26717 Putative membrane lipoprotein [33]
BnaA03g54580D AT1G34370 Sensitive to proton rhizotoxicity 1 (STOP1) [15]
866809-2227131 BnaA09g11920D AT1G64065 Late embryogenesis abundant (LEA) [34]
BnaA09g14610D AT3G43570 GDSL-like Lipase/Acylhydrolase superfamily protein [35]
51210223-55837858 BnaC03g04310D AT5G44050 MATE efflux family protein [16]
BnaC03g65810D AT4G34710 Response to osmotic stress (ADC2) [36]
相对芽长RBL 3249677-4604524 BnaA03g39360D AT5G02490 Heat shock protein 70 (Hsp 70) family protein [37]
598224-1012939 BnaA08g01480D AT1G52490 F-box associated interaction domain [38]
22081699-23394648 BnaA09g02290D AT3G28415 ABC transporter family protein [39]
BnaA09g30790D AT1G22220 F-box family protein
BnaA09g30810D AT1G22190 Response to toxic substance (RAP2.4) [40]
575326-705822 BnaA08g28220D AT1G05250 Peroxidase superfamily protein [41]
19580994-23049951 BnaC08g07240D AT1G33110 MATE efflux family protein
相对干重RDW 32408555-33029777 BnaA09g48330D AT1G49360 F-box family protein
16531371-16654826 BnaA10g24620D AT3G26180 Cytochrome P450 proteins [42]
BnaA10g25760D AT5G04410 Regulation of flavonoid biosynthetic process (NAC) [43]
[1] Abedi M, Bartelheimer M, Poschlod P . Aluminium toxic effects on seedling root survival affect plant composition along soil reaction gradients—a case study in dry sandy grasslands. J Veg Sci, 2013,24:1074-1085.
[2] Balkovic J, Kollar J, Simonovic V, Zarnovican H . Plant assemblages respond sensitively to aluminium solubility in acid soils. Community Ecol, 2014,15:94-103.
[3] Blancaflor E B, Jones D L, Gilroy S . Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol, 1998,118:159-172.
[4] Kochian L V, Hoekenga O A, Pineros M A . How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol, 2004,55:459-493.
[5] Tomonori K, Takashi O, Hiroyuki K, Takuya S, Tetsuo H . Characterization of NADP-isocitrate dehydrogenase expression in a carrot mutant cell line with enhanced citrate excretion. Plant Soil, 2003,248:145-153.
[6] 崔雪梅, 简君萌, 李春生 . 铝胁迫对油菜根系及叶片生理生化指标的影响. 江苏农业科学, 2015,43(12):107-109.
Cui X M, Jian J M, Li C S . Effect of aluminum stress on the physiological and biochemical index of rapeseed root system and blade. J Jiangsu Agric Sci, 2015,43(12):107-109 (in Chinese with English abstract).
[7] 郜欢欢, 叶桑, 王倩, 王刘艳, 王瑞莉, 陈柳依, 唐章林, 李加纳, 周清元, 崔翠 . 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选. 作物学报, 2019,45:1416-1430.
Gao H H, Ye S, Wang Q, Wang L Y, Wang R L, Chen L Y, Tang Z L, Li J N, Zhou Q Y, Cui C . Screening and comprehensive evaluation of aluminum-toxicity tolerance during seed germination in Brassca napus L. Acta Agron Sin, 2019,45:1416-1430 (in Chinese with English abstract).
[8] Yang Y, Shen Y, Li S, Ge X . High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017,8:1512.
[9] 荐红举, 魏丽娟, 李超, 唐章林, 李加纳, 刘列钊 . 基于SNP遗传图谱定位甘蓝型油菜千粒重QTL位点. 中国农业科学, 2014,47:3953-3961.
Jian H J, Wei L J, Li C, Tang Z L, Li J N, Liu L Z . QTL mapping of 1000-Seed weight in Brassica napus by using the high density SNP genetic map. Sci Agric Sin, 2014,47:3953-3961 (in Chinese with English abstract).
[10] Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N . A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013,8:e83052.
doi: 10.1371/journal.pone.0083052
[11] Wan H, Wei Y, Qian J, Qian J, Gao Y, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J . Association mapping of salt tolerance traits at germination stage of rapeseed ( Brassica napus L.). Euphytica, 2018,214:190.
[12] 侯林涛, 王腾岳, 荐红举, 王嘉, 李加纳, 刘列钊 . 甘蓝型油菜盐胁迫下幼苗鲜重和干重QTL定位及候选基因分析. 作物学报, 2017,43:179-189.
Hou L T, Wang T Y, Jian H J, Wang J, Li J L, Liu L Z . QTL mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L. Acta Agron Sin, 2017,43:179-189 (in Chinese with English abstract).
[13] Zhang F, Xiao X, Yan G, Hu J, Cheng X, Li L, Li H, Wu X . Association mapping of cadmium-tolerant QTLs in Brassica napus L. Environ Exp Bot, 2018,155:420-428.
[14] Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Del-haize E, Matsumoto H, . A wheat gene encoding an alumi-activated malate transporter. Plant J, 2004,37:645-653.
[15] Huang C F, Yamaji N, Ma J F . Knockout of a bacterial-type ATP-binding cassette transporter gene, At STAR1, results in increased aluminum sensitivity in Arabidopsis. Plant Physiol, 2010,153:1669-1677.
[16] Liu J, Li Y, Wang W, Gai J, Li Y . Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genomics, 2016,17:223.
[17] Tang Q Y, Zhang C X . Data Processing System ( DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, 2013,20:254-260.
doi: 10.1111/j.1744-7917.2012.01519.x
[18] Kim Y O, Kang H, Ahn S J . Overexpression of phytochelatin synthase AtPCS2 enhances salt tolerance in Arabidopsis thaliana. J Plant Physiol, 2019,240:153011.
[19] Van Ooijen J W . JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, 2006,33:1371.
[20] Kosambi D D . The estimation of map distances from recombination values. Ann Eugenics, 1944,12:172-175.
[21] McCouch S R . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[22] 荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊 . 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. 作物学报, 2014,40:629-635.
Jian H J, Xiao Y, Li J N, Ma Z Z, Wei L J, Liu L Z . QTL Mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map. Acta Agron Sin, 2014,40:629-635 (in Chinese with English abstract).
[23] Gitschier J, Moffat B, Reilly D . Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat Struct Boil, 1998,5:47.
[24] Rothberg J M, Jacobs J R, Goodman C S, Artavanis-Tsakonas S . slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Gene Dev, 1990,4:2169-2187.
[25] 刘红娟, 刘洋, 刘琳 . 脱落酸对植物抗逆性影响的研究进展. 生物技术通报, 2008, ( 6):7-9.
Liu H J, Liu Y, Liu L . Progress of research on the influence of abscisic acid in plant resistance. Biol Technol Bull, 2008, ( 6):7-9 (in Chinese with English abstract).
[26] Barb A W, Leavy T M, Robins L I, Guan Z, Six D A, Zhou P, Bertozzi C R, Raetz Christian R H . Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC. Biochemistry, 2009,48:3068-3077.
[27] Bobulescu I A, Moe O W . Na+/H+ Exchangers in Renal Regulation of Acid-Base Balance. Semin Nephrol, 2006,5:334-344.
[28] McCormack E, Tsai Y C, Braam J . Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci, 2005,10:383-389.
doi: 10.1016/j.tplants.2005.07.001
[29] Lee S J, Koh J Y . Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain, 2010,3:30.
doi: 10.1186/1756-6606-3-30
[30] Van Der Biezen E A, Jones J D G . Plant disease-resistance proteins and the gene-for-gene concept. Trends Biol Sci, 1998,23:454-456.
[31] Kanai A, Kuzuhara T, Sekimizu K, Natori S . Heterogeneity and tissue-specific expression of eukaryotic transcription factor S-II-related protein mRNA. J Biochem, 1991,109:674-677.
[32] Klug A . Zinc finger peptides for the regulation of gene expression. J Mol Biol, 1999,293:215-218.
doi: 10.1006/jmbi.1999.3007
[33] Booth V, Koth C M, Edwards A M, Arrowsmith C H . Structure of a conserved domain common to the transcription factors TFIIS, elongin A, and CRSP70. J Biol Chem, 2000,275:31266-31268.
doi: 10.1074/jbc.M002595200
[34] Hand S C, Menze M A, Toner M, Boswell L, Moore D . LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol, 2010,73:115-134.
[35] Akoh C C, Lee G C, Liaw Y C, Huang T H, Shaw J F . GDSL family of serine esterases/lipases. Prog Lipid Res, 2004,43:534-552.
doi: 10.1016/j.plipres.2004.09.002
[36] Sandmeier E, Hale T I, Christen P . Multiple evolutionary origin of pyridoxal-5′-phosphate-dependent amino acid decarboxylases. Eur J Biochem, 1994,221:997-1002.
doi: 10.1111/ejb.1994.221.issue-3
[37] lundert F A J M, Smulders R H P H, Gijsen M L J . The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur J Biochem, 1998,258:1014-1021.
doi: 10.1046/j.1432-1327.1998.2581014.x
[38] Skowyra D, Craig K L, Tyers M, Elledge S J, Harper J W . F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell, 1997,91:209-219.
doi: 10.1016/S0092-8674(00)80403-1
[39] Brûle S, Smart C C . The plant PDR family of ABC transporters. Planta, 2002,216:95-106.
doi: 10.1007/s00425-002-0889-z
[40] Broglie K E, Biddle P, Cressman R, Broglie R . Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell, 1989,1:599-607.
[41] Schuller D J, Ban N, Huystee R B , McPherson A, Poulos T L. The crystal structure of peanut peroxidase. Structure, 1996,4:311-321.
[42] Gotoh O . Substrate recognition sites in cytochrome P450 family 2 ( CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem, 1992,267:83-90.
[43] Aida M, Ishida T, Fukaki H . Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997,9:841-857.
[44] Siecińska J, Nosalewicz A . Aluminium toxicity to plants as influenced by the properties of the root growth environment affected by other co-stressors: a review. Rev Environ Contam Toxicol, 2017,243:1-26.
[45] Yang Z M, Sivaguru M, Horst W J . Aluminum tolerance is achieved by exudation of citric acid from roots of soybean ( Glycine max). Physiol Plant, 2001,110:72-77.
[46] Liu Y G, Feng H Q, Sun K . Effects of different aluminum stress on the growth of rice roots. Bull Bot Res, 2011,31:293-299.
[47] Hom N H, Becker H C, Möllers C . Non-destructive analysis of rapeseed quality by NIRS of small seed samples and single seeds. Euphytica, 2007,153:27-34.
doi: 10.1007/s10681-006-9195-3
[48] Kim C, Yoon U, Lee G, Park S, Seol Y J, Lee H, Hahn J . An integrated database to enhance the identification of SNP markers for rice. Bioinformation, 2009,4:269.
doi: 10.6026/bioinformation
[49] 周清元, 王倩, 叶桑, 崔明圣, 雷维, 郜欢欢, 赵愉风, 徐新福, 唐章林, 李加纳, 崔翠 . 苯磺隆胁迫下油菜萌发期相关性状的全基因组关联分析. 中国农业科学, 2019,52:399-413.
doi: 10.3864/j.issn.0578-1752.2019.03.002
Zhou Q Y, Wang Q, Ye S, Cui M S, Lei W, Gao H H, Zhao Y F, Xu X F, Tang Z L, Li J N, Cui C . Genome-wide association analysis of tribenuron-methyl tolerance related traits in Brassica napus L. under germination. Sci Agric Sin, 2019,52:399-413 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.03.002
[50] 卫银可 . 甘蓝型油菜种子萌发期耐盐性状的关联分析. 华中农业大学硕士学位论文,湖北武汉, 2016.
Wei Y K . Genome-wide Association Mapping of Salt Tolerance Trait in the Germination Period in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2016 (in Chinese with English abstract).
[51] 薛永 . 水稻耐铝毒QTL分析与精细定位. 南京农业大学博士学位论文,江苏南京, 2006.
Xue Y . QTL Analysis and Fine Mapping for Aluminum Tolerance in Rice. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2006 (in Chinese with English abstract).
[52] Riede C R, Anderson J A . Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci, 1996,36:905-909.
[53] Sibov S T, Gaspar M, Silva M J . Two genes control aluminum tolerance in maize: genetic and molecular mapping analyses. Genome, 1999,42:475-482.
[54] Cartwright D A, Brady S M, Orlando D A, Sturmfels B, Benfey P N . Reconstructing spatiotemporal gene expression data from partial observations. Bioinformatics, 2009,25:2581-2587.
[55] Akazawa T, Hara-Nishimura I . Topographic aspects of biosynthesis, extracellular secretion, and intracellular storage of proteins in plant cells. Annu Rev Plant Physiol, 1985,36:441-472.
doi: 10.1146/annurev.pp.36.060185.002301
[56] Clarkson D T . The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot, 1965,29:309-315.
doi: 10.1093/oxfordjournals.aob.a083953
[57] Ryan P R, Reid R J, Smith F A . Direct evaluation of the Ca 2+-displacement hypothesis for Al toxicity . Plant Physiol, 1997,113:1351-1357.
[58] Degenhardt J, Larsen P B, Howell S H . Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol, 1998,117:19-27.
doi: 10.1104/pp.117.1.19
[59] Shen R, Ma J F . Distribution and mobility of aluminium in an Al-accumulating plant, Fagopyrum esculentum Moench. J Exp Bot, 2001,52:1683-1687.
[60] Lindberg S, Szynkier K, Greger M . Aluminum effects on transmembrane potential in root cells of spruce in relation to pH and growth temperature. J Plant Nutr, 1998,21:975-985.
[61] Watanabe T, Osaki M, Tadano T . Effects of nitrogen source and aluminum on growth of tropical tree seedlings adapted to low pH soils. Soil Sci Plant Nutr, 1998,44:655-666.
[62] Anoop V M, Basu U, McCammon M T, McAlister-Henn L, Taylor G J, . Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol, 2003,132:2205-2217.
[63] 付三雄, 周晓婴, 戚存扣 . 苯磺隆对甘蓝型油菜的杀雄效果及对其靶标ALS活性的影响. 江西农业学报, 2019,31(2):8-12.
Fu S X, Zhou X Y, Qi C K . Male-sterile-inducing efficiency of tribenuron-methyl and its effect on activity of acetolactate synthase in Brassica napus L. Acta Agric Jiangxi, 2019,31(2):8-12 (in Chinese with English abstract).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[10] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[11] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[12] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[13] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[14] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[15] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!