欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (6): 844-857.doi: 10.3724/SP.J.1006.2020.94171

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析

郑清雷1,余陈静1,姚坤存1,黄宁1,阙友雄1,4,凌辉2,3,*(),许莉萍1,4,*()   

  1. 1福建农林大学 / 农业农村部福建甘蔗生物学与遗传育种重点实验室, 福建福州 350002
    2福建农林大学生命科学学院, 福建福州 350002
    3玉林师范学院农学院, 广西玉林 537000
    4福建农林大学 / 教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
  • 收稿日期:2019-11-10 接受日期:2020-01-15 出版日期:2020-06-12 网络出版日期:2020-02-17
  • 通讯作者: 凌辉,许莉萍
  • 作者简介:E-mail: zhengqinglei1666@163.com.
  • 基金资助:
    国家自然科学基金项目(31801424);国家现代农业产业技术体系建设专项(CARS-17)

Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC

ZHENG Qing-Lei1,YU Chen-Jing1,YAO Kun-Cun1,HUANG Ning1,QUE You-Xiong1,4,LING Hui2,3,*(),XU Li-Ping1,4,*()   

  1. 1Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Area / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3College of Crop Science, Yulin Normal University, Yulin 537000, Guangxi, China
    4Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2019-11-10 Accepted:2020-01-15 Published:2020-06-12 Published online:2020-02-17
  • Contact: Hui LING,Li-Ping XU
  • Supported by:
    National Natural Science Foundation of China(31801424);China Agriculture Research System(CARS-17)

摘要:

细胞色素b6f复合体还原型铁硫蛋白前体(Cytochrome b6f complex Rieske Fe/S precursor protein, PetC)是由细胞核PetC基因编码的蛋白, 其成熟蛋白参与构成细胞色素b6f复合体, 是电子传递的重要元件。基于前期构建的受高粱花叶病毒(Sorghum mosaic virus, SrMV)侵染的甘蔗转录组数据库, 从主栽甘蔗品种‘新台糖22号’叶片中成功克隆到该基因, 并命名为ScPetC (GenBank登录号为MH333037.1)。生物信息学分析发现, ScPetC基因cDNA全长824 bp, 包含了一个678 bp的开放阅读框, 编码226个氨基酸。ScPetC属于PRK13473超家族, 其C末端具有典型的Rieske保守结构域; 蛋白理论等电点为8.19, 属于稳定的、亲水性蛋白; 二级结构多为无规则卷曲, 三级结构预测其比其他植物PetC多出一段α螺旋结构。在本氏烟(Nicotiana benthamiana)叶片瞬时表达中, ScPetC定位于叶绿体、细胞质和细胞膜。尽管前人研究表明, ScPetC的表达量会受SrMV侵染的影响, 不同于半夏(Pinellia ternata) PetC与大豆花叶病毒(Soybean mosaic virus, SMV) P1蛋白之间的互作, ScPetC不能与SrMV-P1蛋白互作, 但能与甘蔗黄叶病毒(Sugarcane yellow leaf virus, SCYLV) P0蛋白互作。实时荧光定量PCR分析表明, ScPetC基因在甘蔗不同组织中均有表达, 但在叶片中的表达量最高。甘蔗受脱落酸胁迫3 h时, ScPetC表达量显著上调, 但是随着处理时间的延长, 表达受到抑制; 在茉莉酸甲酯、水杨酸、氯化铜、氯化镉和氯化钠胁迫下, ScPetC表达量均显著下调。本研究通过对ScPetC生物学功能、环境外源激素与重金属等胁迫下的表达模式及其与甘蔗病原病毒蛋白互作的初步探究, 增加了对甘蔗PetC的了解, 也为深入研究其在甘蔗受黄叶病毒侵染中的作用奠定基础。

关键词: 甘蔗, 细胞色素b6f复合体还原型铁硫蛋白前体, 生物信息学, 亚细胞定位, 蛋白互作, 实时荧光定量PCR

Abstract:

Cytochrome b6f complex Rieske Fe/S precursor protein (PetC) is encoded by the nuclear PetC gene, and its mature protein involved in the formation of the cytochrome b6f complex, which is important for electron transfer. Based on our previous transcriptome data of sugarcane (Saccharum spp. hybrids) infected by Sorghum mosaic virus (SrMV), a cytochrome b6f complex reduced iron-sulfur precursor protein gene was cloned from leaves of sugarcane superior elite cultivar ‘ROC22’, and named as ScPetC (GenBank accession number: MH333037.1). Bioinformatics analysis showed that the ScPetC gene was 824 bp in length, containing a 678 bp open reading frame (ORF), and encoding a peptide of 226 amino acids. ScPetC belongs to the PRK13473 superfamily and has a typical Rieske domain at its C-terminus of the amino acid chain. ScPetC is a stable and hydrophilic protein with pI 8.19. Most of the secondary structural elements in ScPetC were random coil. Compared to the PetC from the other plants, ScPetC contained one more fragment of helix in its third dimensional structure. The transient expression of YFP-fused protein in Nicotiana benthamiana leaves showed that ScPetC was located in the chloroplast, cytoplasm and cell membrane. Although the previous study indicated that the expression of ScPetC was affected by SrMV infection in sugarcane, different to the interaction between Pinellia ternata PetC and SMV-P1, without interaction between ScPetC and the SrMV-P1, it did interact with SCYLV-P0, i.e. the P0 protein of Sugarcane yellow leaf virus (SCYLV). Real-time quantitative PCR analysis showed that ScPetC gene was expressed constitutively in different tissues of sugarcane, and the highest level of its expression was found in leaves. When sugarcane plant was exposed to abscisic acid stress for 3 h, the expression of ScPetC was significantly up-regulated, but the expression level was then inhibited with longer treatment time. Under the stress of methyl jasmine, salicylic acid, copper chloride, cadmium chloride and sodium chloride, the expression of ScPetC was significantly down-regulated. The study on biological function, expression pattern and interaction of ScPetC with the proteins of sugarcane pathogenic virus will improve the understanding of the happening of yellow leaf symptom, which caused by SCYLV.

Key words: sugarcane, cytochrome b6f complex Rieske Fe/S precursor protein, bioinformatics, subcellular location, protein interaction, real-time flourescent quantitative PCR

表1

引物序列及用途"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Usage
ScPetC-F TGGACGCCAGGGAGTGAAC 基因克隆
Gene cloning
ScPetC-R TGTAGCAACAACGCCTTCGG
ScPetC-QF GTACAACAACCAGGGCAAGG 实时荧光定量PCR
qRT-PCR
ScPetC-QR CAGGGACAGGAGGCATACAT
CAC-F ACAACGTCAGGCAAAGCAAA 内参基因
Reference gene
CAC-R AGATCAACTCCACCTCTGCG
CUL-F TGCTGAATGTGTTGAGCAGC 内参基因
Reference gene
CUL-R TTGTCGCGCTCCAAGTAGTC
ScPetC-Subloc-F CGAACGATACTCGAGGTCGACATGGCGACCTCCGCG 亚细胞定位载体
Vector for subcellular localization
ScPetC-Subloc-R GCTCACCATACTAGTGGATCCTGCCTTCCACCACGG
ScPetC-AD-F CCATGGAGGCCAGTGAATTCATGGCGACCTCCGCGGCGCT 酵母双杂交载体
Vector for Y2H
ScPetC-AD-R AGCTCGAGCTCGATGGATCCTGCCTTCCACCACGGGTCCT
SrMV-P1-BK-F TGGCCATGGAGGCCGAATTCATGGCAGGAGCATGGAGCAC 酵母双杂交载体
Vector for Y2H
SrMV-P1-BK-R CGCTGCAGGTCGACGGATCC AAAATAAGTAATTTCATTGA
SCYLV-P0-BK-F TGGCCATGGAGGCCGAATTCATGCTTTTCAACGAATTCTC 酵母双杂交载体
Vector for Y2H
SCYLV-P0-BK-R CGCTGCAGGTCGACGGATCCTATATCATGAGAATAGGTGC
ScPetC-YN-F TCTGAGGAGGATCTTCCCGGGATGGCGACCTCCGCGGCGCT 双分子荧光互补实验载体
Vector for BiFC
ScPetC-YN-R AGGGCATGCCTGCAGGTCGACGTGCCTTCCACCACGGGTCCT
SrMV-P1-YC-F TCTAGGAGCTCGGTACCCGGGATGGCAGGAGCATGGAGCAC 双分子荧光互补试验载体
Vector for BiFC
SrMV-P1-YC-R ATCGTATGGGTACATACTAGTAAAATAAGTAATTTCATTGA
SCYLV-P0-YC-F CTAGGAGCTCGGTACCCGGGATGCTTTTCAACGAATTCTC 双分子荧光互补实验载体
Vector for BiFC
SCYLV-P0-YC-R TCGTATGGGTACATACTAGTTATATCATGAGAATAGGTGC

表2

生物信息学研究的数据库和软件"

工具Tool 网址Website
ORF Finder https://www.ncbi.nlm.nih.gov/orffinder/
ExPaSy http://web.expasy.org/protparam/
Prabi https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_hnn.html
SWISSMODEL http://swissmodel.expasy.org/interactive
SignalP 4.1 Server http://www.cbs.dtu.dk/servers/SignalP/
NCBI conserved domain http: //blast.ncbi.nlm.nih.gov/
WoLFPSORT https://wolfpsort.hgc.jp/
TMHMM 2.0 Server http://www.cbs.dtu.dk/servers/TMHMM/
ProtScale https://web.expasy.org/protscale/
MEME http://meme-suite.org/

图1

甘蔗ScPetC基因的RT-PCR扩增及其编码氨基酸序列 (A) M: marker 100 bp; I: RT-PCR产物。(B) ScPetC: 甘蔗细胞色素b6f复合体还原型铁硫蛋白前体序列; SoCYT: 甘蔗细胞色素b6f复合体铁硫亚基氨基酸序列[34]。"

表3

ScPetC一级结构预测分析"

一级结构特性Primary structure characteristic 预测结果Predicted result
编码的氨基酸个数Number of coding amino acids 225
等电点 Theoretical pI 8.19
分子量 Molecular weight (×103) 23.85
分子式 Formula C1054H1668N294O315S11
不稳定系数 Instability index (II) 21.61
平均疏水性Grand average of hydropathicity (GRAVY) -0.146

图2

甘蔗ScPetC的生物信息学软件预测结果 A: 信号肽; B: 跨膜结构域; C: 保守结构域。"

图3

甘蔗、水稻、半夏和菠菜的PetC成熟蛋白三级结构预测 黄色箭头处为PetC蛋白的[2Fe-2S]结合域; 蓝色和红色箭头所指位点为氨基酸链的N端和C端; 绿色箭头所指位点为α螺旋。图A中白色箭头表示ScPetC与其他植物PetC的差异α螺旋所在位置。"

图4

甘蔗ScPetC与其他植物PetC氨基酸序列对比 红色方框表示ScPetC内为已报道保守氨基酸基序。CAM57108: 半夏; XP_015647138: 水稻; XP_002441121: 高粱; P08980: 菠菜; P26291: 豌豆; CAA45705: 本氏烟。"

图5

甘蔗ScPetC与其他物种PetC的系统进化树分析与motif预测 图中进化树橘色部分代表细胞色素b6f复合体类, 蓝色部分代表细胞色素bc1复合体类; III组中的红色圆圈标记为ScPetC; 不同颜色的方框代表不同的组(I、II、III、IV、V、VI、VII)。NP_001237648.2: 大豆; XP_015647138.1: 水稻; XP_0202013301.1: 小麦; Q9ZR03.1: 拟南芥; P26291: 豌豆; AAD55565.1: 团藻; CAA27194: 类红球细菌; CAA45705: 本氏烟; CAA70823: 席藻; CAB72244: 鱼腥藻; CAM57108.1: 半夏; CAM57109.1: 马蹄莲; O49078: 贝母; P05417: 脱氮副球菌; P08067: 酿酒酵母; P08980: 菠菜; P14698: 蓝藻; P23136: 深红红螺菌; P26290: 集胞藻; P26291: 豌豆; P26292: 聚球藻; P37841: 马铃薯; P49728: 衣藻; Q9ZR03: 拟南芥; XP_002441121: 高粱; ACG28308: 玉米; XP_004951312: 小米。"

图6

甘蔗ScPetC亚细胞定位结果 农杆菌介导ScPetC及空载体在本氏烟叶片瞬时表达48 h后的亚细胞定位结果; 本氏烟叶片表皮细胞被用于明场、黄色荧光、叶绿体自发荧光、明场和黄色及红色荧光叠加后的图像分析; 蓝色箭头1、2分别表示细胞核、质膜; 红色虚线框表示被放大区域; 比例尺=50 μm; 35S::YFP: 携带空载pCAMBIA2300-YFP的农杆菌菌株; 35S:: ScPetC::YFP: 携带重组载体pCAMBIA2300-ScPetC-YFP的农杆菌菌株。"

图7

甘蔗ScPetC与高粱花叶病毒和甘蔗黄叶病毒蛋白的互作实验验证 A: 甘蔗ScPetC与SrMV-P1蛋白的酵母双杂交互作验证。B: 甘蔗ScPetC与SCYLV-P0蛋白的酵母双杂交互作验证; SD/-Ade/-His/Leu/-Trp: 腺嘌呤、组氨酸、亮氨酸和色氨酸营养缺陷型平板培养基; SD/-Ade/-His/Leu/-Trp/X-α-Gal: 腺嘌呤、组氨酸、亮氨酸和色氨酸营养缺陷型平板培养基(添加5-溴-4-氯-3-吲哚-α-D-半乳糖苷); SD/-Ade/-His/Leu/-Trp/X-α-Gal/AbA: 腺嘌呤、组氨酸、亮氨酸和色氨酸营养缺陷型平板培养基(添加5-溴-4-氯-3-吲哚-α-D-半乳糖苷和金担子素A)。C: ScPetC与SCYLV-P0蛋白的双分子荧光互补实验; YC、YN、YN-ScPetC和YC-P0分别代表质粒pCAMBIA2300S-YC、pCAMBIA2300S-YN、pCAMBIA2300S-YN-ScPetC和pCAMBIA2300S-YC-P0 [42]。"

图8

甘蔗ScPetC基因的转录表达模式分析 A: 甘蔗ScPetC基因在甘蔗不同组织中的表达情况; B和C: 甘蔗ScPetC基因在不同外源胁迫下的相对表达情况。不同的小写字母(a、b、c、d)表示差异显著性(P ≤ 0.05); 误差线为每组处理的标准误差(n = 3)。"

[1] Yadav R L, Solomon S . Potential of developing sugarcane by product based industries in India. Sugar Tech, 2006,8:104-111.
[2] 何炎森, 李瑞美 . 甘蔗花叶病研究现状. 中国糖料, 2006, ( 1):47-49.
He Y S, Li R M . Research status of Sugarcane mosaic virus disease in China. Sugar Crops China, 2006, ( 1):47-49 (in Chinese with English abstract).
[3] iaz O D L C A, Hechavarra M D L L O, Izaguirre Y P, Navarro M D L A Z, Lopez J M M L, Lissbrant S, Arencibia A . Genotyping of Sugarcane yellow leaf virus in commercial cultivars and the Cuban germplasm collection. Sugar Tech, 2016,19:102-108.
[4] 王伯辉 . 我国甘蔗病害的发生现状与研究进展. 中国糖料, 2007, ( 3):261-265.
Wang B H . The occurrence status and research progress of surgarcane disease in China. Sugar Crops China, 2007, ( 3):261-265 (in Chinese with English abstract).
[5] Shukla D D, Frenkel J M, McKern M N, Ward C W, Jilka J, Tosic M, Ford R E, . Present status of the sugarcane mosaic subgroup of potyviruses. Arch Virol Suppl, 1992,5:363-373.
[6] Elsayed A I, Komor E . Investigation of ORF0 as a sensitive alternative diagnostic segment to detect Sugarcane yellow leaf virus. J Gen Plant Pathol, 2012,78:207-216.
[7] Mirkov T E, Ingelbrecht I, Castillon A, Hernandez J C . Identification of sugarcane proteins involved in posttranscriptional gene silencing. Proc Int Soc Sugarcane Technol, 2001,24:327-330.
[8] Shan H Y, Pasin F, Valli A, Castillo C, Rajulu C, Carbonell A, Mateo S C, García J A, Rodamilans B . The Potyviridae P1a leader protease contributes to host range specificity. Virology, 2015,476:264-270.
[9] Fabio P, Carmen S M, Antonio G J . The hypervariable amino terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog, 2014,10:e1003985. doi 10.1371/journal.ppat.1003985.
doi: 10.1371/journal.ppat.1003985
[10] Mangwende T, Wang M L, Borth W, Hu J, Moore P H, Mirkov T E, Albert H H . The P0 gene of Sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities. Virology, 2009,384:38-50.
doi: 10.1016/j.virol.2008.10.034
[11] Veidt I, Bouzoubaa S E, Leiser R M, Zieglergraff V A, Guilley H, Richards K, Jonard G . Synthesis of full-length transcripts of Beet western yellows virus RNA messenger properties and biological activity in protoplasts. Virology, 1992,186:192-200.
doi: 10.1016/0042-6822(92)90073-X
[12] 燕照玲, 段俊枝, 冯丽丽, 陈海燕, 齐红志, 杨翠苹, 施艳, 张会芳 . 马铃薯Y病毒属病毒编码蛋白与寄主植物叶绿体蛋白互作研究进展. 河南农业科学, 2017,46(11):1-5.
Yan Z L, Duan J Z, Feng L L, Chen H Y, Qi Z H, Yang C P, Shi Y, Zhang H F . Progress on interaction between potyviruses coded proteins and chloroplast proteins of host plants. J Henan Agric Sci, 2017,46(11):1-5 (in Chinese with English abstract).
[13] Zhao J P, Zhang X, Hong Y G, Liu Y L . Chloroplast in plant virus interaction. Front Microbiol, 2016,7:1565. doi: 10.3389/fmicb.2016.01565.
[14] Lin L, Luo Z P, Yan F, Lu Y W . Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes, 2011,43:90-92.
doi: 10.1007/s11262-011-0596-6
[15] 翟玉山, 赵贺, 张海, 邓宇晴, 程光远, 杨宗桃, 王彤, 彭磊, 徐倩, 董萌, 徐景升 . 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其与甘蔗花叶病毒VPg互作研究, 作物学报, 2019,45:1478-1487.
doi: 10.3724/SP.J.1006.2019.94002
Zhai Y S, Zhao H, Zhang H, Deng Y Q, Cheng G Y, Yang Z T, Wang T, Peng L, Xu Q, Dong M, Xu J S . Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus. Acta Agron Sin, 2019,45:1478-1487 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.94002
[16] Shi Y, Chen J, Hong X, Chen J, Adams M J . A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Mol Plant Pathol, 2010,8:785-790.
doi: 10.1111/mpp.2007.8.issue-6
[17] Pazhouhandeh M, Dieterle M, Marrocco K, Lechner E, Berry B, Brault V, Hemmer O, Kretsch T, Richards K E, Genschik P, Graff V Z . F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc Natl Acad Sci USA, 2006,103:1994-1999.
doi: 10.1073/pnas.0510784103
[18] Sun Q Q, Li Y Y, Wang Y, Zhao H H, Zhao T Y, Zhang Z Y, Li D W, Yu J L, Wang X B, Zhang Y L, Han C G . BrYV P0 protein impairs the antiviral activity of NbRAF2 in Nicotiana Benthamiana. J Exp Bot, 2018,69:3127-3139.
doi: 10.1093/jxb/ery131
[19] 李合生 . 现代植物生理学(第3版). 北京: 高等教育出版社, 2012. pp 114-118.
Li H S . Modern Plant Physiology, 3rd edn. Beijing: Higher Education Press, 2012. pp 114-118(in Chinese).
[20] Schottler M A, Tóth S Z, Boulouis A . Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J Exp Bot, 2015,66:2373-2400.
doi: 10.1093/jxb/eru495
[21] Rieske J S, Zaugg W S, Hansen R E . Studies on the electron transfer system. J Biol Chem, 1964,242:2051-2061.
[22] Rieske J S . Composition, structure, and function of complex III of the respiratory chain. Biochim Biophys Acta, 1976,456:195-247.
[23] Steppuhn J, Rother C, Hermans J, Jansen T . The complete amino acid sequence of the Rieske Fe/S precursor protein from spinach chloroplasts deduced from cDNA analysis. Mol Gen Genet, 1987,210:171-177.
doi: 10.1007/BF00337775
[24] Salter A H, Newman B J, Napier J, Gray J C . Import of the precursor of the chloroplast Rieske iron-sulfur protein by pea chloroplasts. Plant Mol Biol, 1992,20:569-574.
doi: 10.1007/BF00040617
[25] Knight J S, Duckett C M, Sullivan J A, Walker A R, Gray J C . Tissue-specific, light-regulated and plastid-regulated expression of the single-copy nuclear gene encoding the chloroplast Rieske Fe/S protein of Arabidopsis thaliana. Plant Cell Physiol, 2002,43:522-531.
doi: 10.1093/pcp/pcf062
[26] Madueno F, Bradshaw S A, Gray J C . The thylakoid-targeting domain of the chloroplast Rieske iron-sulfur protein is located in the N-terminal hydrophobic region of the mature protein. J Biol Chem, 1994,26:17458-17463.
[27] Vitry C D . Characterization of the gene of the chloroplast Rieske iron-sulfur protein in Chlamydomonas reinhardtii indications for an uncleaved lumen targeting sequence. J Biol Chem, 1994,269:7603-7609.
[28] Carrell C J, Zhang H, Cramer W A, Smith J L . Biological identity and diversity in photosynthesis and respiration: structure of the lumen side domain of the chloroplast Rieske protein. Structure, 1997,5:1613-1625.
[29] Hasan S S, Yamashita E, Cramer W A . Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. Biochim Biophys Acta, 2013,1827:1295-1308.
[30] Cramer W A, Hasan S S, Yamashita E, Kahlau S . The Q cycle of cytochrome bc1 complexes: a structure perspective. Biochim Biophys Acta, 2011,1807:788-802.
[31] Yamori W, Kondo E, Sugiura D, Terashima I, Suzuki Y, Makino A . Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske Fe/S protein content in the cytochrome b6f complex. Plant Cell Environ, 2016,39:80-87.
[32] Simkin A J, Lorna M, Lawson T, Raines C A . Over-expression of the Rieske Fe/S protein increases electron transport rates and biomass yield. Plant Physiol, 2017,175:134-145.
[33] Sanda S, Munekage Y N, Yoshida K, Akashi K, Yokota A . Excess light-induced molecular responses of chloroplast Rieske Fe/S protein. Photosynth Energy Sun, 2008,14:941-944.
[34] 梁潘霞, 李杨瑞 . 甘蔗细胞色素b6f复合体铁硫亚基(SoCYT)基因的克隆和表达分析. 西南农业学报, 2016,29:1032-1037.
Liang P X, Li L R . Cloning of cytochrome b6/f complex iron-sulfur subunit( SoCYT) from sugarcane and analysis of its expression under PEG stress. Acta Agric Boreali-occident Sin, 2016,29:1032-1037 (in Chinese with English abstract).
[35] Luo M, Kong X Y, Jiang T, Jia C, Zhou R H, Jia J Z . Analysis of resistance to powdery mildew in wheat based on Expressed Sequence Tags (EST) technique. Acta Bot Sin, 2002,44:567-572.
[36] 阙友雄, 林剑伟, 徐景升, 阮秒鸿, 许莉萍, 张木清, 陈由强, 陈如凯 . 甘蔗与黑穗病菌互作的叶片差异蛋白分析. 热带作物学报, 2008,29:136-140.
Que Y X, Lin W J, Xu J S, Ruan M H, Xu L P, Zhang M Q, Chen Y Q, Chen R K . Analysis of protein expression patterns of leaves from interaction between sugarcane and Ustilago scitaminea. Chin J Trop Crops, 2008,29:136-140 (in Chinese with English abstract).
[37] Ling H, Huang N, Wu Q B, Su Y C, Peng Q, Ahmed W, Gao S W, Su W H, Que Y X, Xu L P . Transcriptional insights into the sugarcane- Sorghum mosaic virus interaction. Trop Plant Biol, 2018,11:163-176.
[38] 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄 . 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析. 热带作物学报, 2013,34:2200-2208.
Huang N, Zhang Y Y, Ling H, Luo J, Wu Q B, Que Y X . Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane. Chin J Trop Crops, 2013,34:2200-2208 (in Chinese with English abstract).
[39] 苏亚春, 黄珑, 凌辉, 王竹青, 刘峰, 苏炜华, 黄宁, 吴期滨, 高世武, 阙友雄 . 甘蔗CDK基因的cDNA全长克隆与表达分析. 作物学报, 2017,43:42-50.
Su Y C, Huang L, Ling H, Wang Z Q, Liu F, Su W H, Huang N, Wu Q B, Gao S W, Que Y X . Cloning and expression analysis of CDK Gene in sugarcane. Acta Agron Sin, 2017, 43:42-50 (in Chinese with English abstract).
[40] Liu F, Huang N, Wang L, Ling H, Sun T T, Ahmad W, Muhammad K, Guo J X, Xu L P, Gao S W, Que Y X, Su Y C . A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci, 2017,8:2262. doi: 10.3389/fpls.2017.02262.
[41] Schmidt C L, Shaw L . A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins. J Bioenerg Biomembr, 2001,33:9-26.
[42] Schütze K, Harter K, Chaban C . Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Metho Mol Biol, 2009,479:189-202.
[43] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X . The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042. doi: 10.1038/srep07042.
[44] 郑红英 . TuMV HC-Pro蛋白自身互作及其与拟南芥编码Rieske Fe/S蛋白的互作研究. 华中农业大学博士学位论文, 湖北武汉, 2011.
Zheng H Y . The Self Interaction of TuMV HC-Pro and Its Interaction with Rieske Fe/S Protein Encoded by Arabidopsis thaliana. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract).
[45] Dashevskaya S, Horn R, Chudobova I, Schillberg S, Velez S M R, Capell T, . Abscisic acid and the herbicide safener cyprosulfamide cooperatively enhance abiotic stress tolerance in rice. Mol Breed, 2013,32:463-484.
[46] Liu B, Xue X D, Cui S P, Zhang X Y, Han Q M, Zhu L, Liang X F, Wang X J, Huang L L, Chen X M, Kang Z S . Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol Biol Rep, 2010,37:1045-1052.
[47] 严蓓 . 钙缓解黄瓜幼苗NaCl胁迫伤害的蛋白质组学及光合碳代谢研究. 南京农业大学硕士学位论文,江苏南京, 2013.
Yan P . Proteomics and Photosynthetic Carbon Metabolism Research on Calcium Alleviating Salt Stress of Cucumber Seedlings. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[6] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[7] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[8] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[9] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[10] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[11] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[12] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[13] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[14] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[15] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!