欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (6): 893-903.doi: 10.3724/SP.J.1006.2019.81078

• 耕作栽培·生理生化 • 上一篇    下一篇

周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响

李昊昱1,孟兆良1,庞党伟2,陈金2,侯永坤1,崔海兴1,金敏1,王振林1,*(),李勇1,*()   

  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室
    2 山东农业大学生命科学学院, 山东泰安271018
  • 收稿日期:2018-10-21 接受日期:2019-01-19 出版日期:2019-06-12 网络出版日期:2019-06-12
  • 通讯作者: 王振林,李勇
  • 作者简介:E-mail: lhaoyu2016@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300400);本研究由国家重点研发计划项目(2017YFD0301001);国家重点基础研究发展计划项目(973计划)项目(2015CB150404);山东省泰山产业领军人才工程高效生态农业创新类和山东省重大应用技术创新项目(2014GJJS0201-5-2)资助

Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland

Hao-Yu LI1,Zhao-Liang MENG1,Dang-Wei PANG2,Jin CHEN2,Yong-Kun HOU1,Hai-Xing CUI1,Min JIN1,Zhen-Lin WANG1,*(),Yong LI1,*()   

  1. 1 Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;
    2 College of Life Sciences, Shandong Agricultural University, Tai’an 201018, Shandong, China;
  • Received:2018-10-21 Accepted:2019-01-19 Published:2019-06-12 Published online:2019-06-12
  • Contact: Zhen-Lin WANG,Yong LI
  • Supported by:
    This study was supported by the National Research and Development Program(2016YFD0300400);This study was supported by the National Research and Development Program(2017YFD0301001);the National Basic Research Program of China(2015CB150404);the Shandong Mount Tai Program for Industrial Leading Talents, and the Shandong Innovation Project for Applied Technologies in Agriculture (2014GJJS0201-5-2).

摘要:

为明确不同秸秆还田模式对黄淮海东部小麦-玉米周年产量与农田土壤固碳的影响, 研究了双季秸秆不还田(NS), 夏玉米季秸秆还田(SS), 冬小麦季秸秆还田(WS)和双季秸秆还田(DS)对0~40 cm各土层土壤容重(SBD), 有机碳含量(SOC)、储量(SCS)和土壤团聚体分布及固碳能力(CPC)的影响。结果表明, 秸秆还田尤其是双季秸秆还田模式显著降低土壤容重, 促进0~30 cm各土层<0.25 mm粒级团聚体向大团聚体团聚, >5 mm、5~2 mm和1~0.5 mm粒级团聚体质量比例显著升高, 平均增加57.2%、25.0%和13.7%; 同时, 土壤团聚体的平均重量直径(MWD)提高22.7%; 与NS相比, 秸秆还田显著提高了土壤有机碳含量, 增幅为4.0%~20.7%; 有机碳储量增幅为0.2%~14.7%。且双季秸秆还田对0~30 cm各粒级团聚体关联SOC和土壤固碳能力的提升作用最为显著。0~30 cm土层中秸秆还田量与SOC、SOC与MWD均呈显著正相关; 而SOC与SBD则呈显著负相关。在30~40 cm土层中, 各处理差异不显著。与不还田处理相比, 各还田处理均提高小麦-玉米周年产量, 其中, DS处理增产幅度最大, 两个周年平均增产达14.3%。双季还田模式是当前黄淮海区域土质提升和作物增产的最佳措施; 单季秸秆还田能维持较高的土壤生产力, 同时提供大量秸秆的饲料化、能源化和原料化多元利用。

关键词: 周年秸秆还田模式, 团聚体, 有机碳, 周年产量

Abstract:

This study sought to determine the effects of different straw return patterns on the annual wheat-maize yield and soil organic carbon content (SOC) in the east area of Huang-Huai-Hai Plain. Four treatments were set up in the experiment: No straw return (NS), Summer maize-season straw return (SS), Winter wheat-season straw return (WS), and Double-season straw return (DS). SOC and aggregates classified by wet screening in 0-40 cm soil layers were measured. The straw return significantly decreased the soil bulk density and the mass proportion of micro-aggregate (< 0.25 mm), and increased the macro-aggregate of >5 mm, 5-2 mm, and 1-0.5 mm by 57.2%, 25.0%, and 13.7% on average suggesting straw return could accelerate soil aggregation and aggregate stability. MWD increased by 22.7%. Meanwhile, straw return not only increase SOC in 0-30 cm layers by 4.0% to 20.7%, and SCS by 0.2% to 14.7%, but also markedly increased the SOC of aggregates and carbon preservation capacity. The straw returning amount was correlated related with SOC, and SOC was positively correlated with MWD in 0-30 cm soil layers. In the 30-40 cm soil layer, both SOC of aggregates and carbon preservation capacity among treatments were not significantly different. The highest grain yield was observed in DS with the increased annual crop yield by 14.3%. Consequently, the double-season straw return model is a good option for improving soil quality in winter wheat-summer maize rotation systems; however, single-straw incorporation could maintain higher soil production, and provide abundant straw feed, energy and raw materials.

Key words: annual straw return model, aggregate, organic carbon, yield

表1

试验设计"

代码
Code
处理
Treatment
田间操作
Field operation
NS 秸秆双季不还田
No straw incorporation
玉米、小麦秸秆全量移除。
All maize and wheat straws are removed.
SS 夏玉米季秸秆还田
Summer maize-season straw incorporation
玉米秸秆全量移除; 小麦秸秆经灭茬机粉碎后(约5~10 cm), 免耕覆盖还田。
Maize straws are removed fully. wheat straws are smashed (5-10 cm) and returned with no-tillage.
WS 冬小麦季秸秆还田
Winter wheat-season straw incorporation
玉米秸秆经灭茬机粉碎后(约5~10 cm), 旋耕还田; 小麦秸秆全量移除。
Maize straws are smashed (5-10 cm) and returned with rotary tillage. All wheat straws are removed.
DS 秸秆双季还田
Double-season straw incorporation
秸秆经灭茬机粉碎后(约5~10 cm), 玉米秸秆旋耕还田, 小麦秸秆免耕覆盖还田
All straws are smashed (5-10 cm); Maize straw was returned with rotary tillage and wheat straw with no-tillage.

表2

两年还田秸秆总量与性质"

秸秆类型
Straw type
地上部秸秆还田量
The rate of straw returned to the field (kg hm-2)
全氮
Total N (g kg-1)
有机碳
Organic carbon (g kg-1)
碳氮比
C/N
小麦秸秆 Wheat straw 22000 4.75 313.44 66.04
玉米秸秆 Maize straw 16000 7.57 363.77 48.05

表3

不同秸秆还田模式对0~40 cm土壤容重、团聚体分布及稳定性的影响"

处理
Treatment
容重
SBD
(g cm-3)
大团聚体
质量比例
R0.25 (%)
各粒级团聚体质量比例 Soil aggregate proportion (%) 平均重量直径
MWD (mm)
>5 mm 5-2 mm 2-1 mm 1.0-0.5 mm 0.05-0.25 mm <0.25 mm
0-10 cm
NS 1.41 a 73.50 b 3.99 a 15.43 a 13.63 a 20.54 a 19.91 a 26.50 a 1.24 b
SS 1.32 b 81.95 a 8.71 a 16.39 a 15.32 a 25.43 a 16.10 a 18.05 b 1.54 a
WS 1.35 ab 82.21 a 6.37 a 17.41 a 13.10 a 25.95 a 19.37 a 17.79 b 1.44 ab
DS 1.30 b 84.55 a 8.97 a 17.19 a 13.92 a 25.88 a 18.59 a 15.45 b 1.56 a
10-20 cm
NS 1.49 a 74.82 b 3.13 a 17.22 a 15.13 a 23.69 a 15.66 a 25.18 a 1.29 b
SS 1.42 ab 80.29 b 3.32 a 16.52 a 17.07 a 28.32 a 15.06 a 19.71 a 1.32 b
WS 1.47 ab 89.45 a 5.82 a 18.13 a 21.13 a 28.82 a 15.56 a 10.55 b 1.54 ab
DS 1.39 b 88.49 a 8.44 a 24.63 a 20.30 a 25.19 a 9.92 a 11.51 b 1.84 a
20-30 cm
NS 1.51 a 70.83 c 3.25 a 9.96 c 11.73 b 23.11 a 22.80 a 29.18 a 1.02 b
SS 1.46 ab 75.14 bc 3.42 a 11.62 bc 17.62 ab 22.58 a 19.90 a 24.87 ab 1.15 ab
WS 1.50 ab 80.40 ab 1.56 a 17.59 ab 12.77 ab 29.82 a 18.66 a 19.60 bc 1.23 ab
DS 1.44 b 84.40 a 2.25 a 20.21 a 20.38 a 26.99 a 14.57 a 15.60 c 1.42 a
30-40 cm
NS 1.51 a 76.84 a 1.03 a 5.69 a 10.80 a 38.60 a 20.73 a 23.16 a 0.84 a
SS 1.46 a 72.64 a 0.32 a 3.29 a 8.49 a 38.49 a 22.05 a 27.36 a 0.70 a
WS 1.51 a 72.42 a 0.63 a 4.83 a 15.21 a 31.47 a 20.28 a 27.58 a 0.81 a
DS 1.46 a 71.31 a 0.24 a 2.70 a 10.05 a 26.12 a 32.21 a 28.69 a 0.65 a

图1

不同秸秆还田模式对0~40 cm土壤有机碳含量和储量的影响 NS: 秸秆不还田; SS: 夏玉米季秸秆还田; WS: 冬小麦季秸秆还田; DS: 秸秆双季还田; SOC: 土壤有机碳含量; SCS: 土壤有机碳储量。"

表4

不同秸秆还田模式对0~40 cm土层中各粒级团聚体关联有机碳含量的影响"

土层深度
Soil depth
处理
Treatment
不同粒级团聚体有机碳含量 Aggregate-associated SOC (g kg-1)
>5 mm 5-2 mm 2-1 mm 1.0-0.5 mm 0.50-0.25 mm <0.25 mm
0-10 cm NS 6.30 a 5.92 b 5.88 b 5.55 a 5.53 a 5.24 a
SS 6.76 b 6.54 ab 6.24 ab 5.89 a 5.92 a 5.43 a
WS 6.56 ab 6.42 ab 5.92 ab 5.58 a 5.61 a 5.25 a
DS 6.87 a 6.71 a 6.41 a 6.03 a 5.93 a 5.43 a
10-20 cm NS 7.05 a 6.19 b 6.10 b 5.93 a 5.73 a 5.43 a
SS 7.11 a 6.59 ab 6.44 ab 6.13 a 5.96 a 5.67 a
WS 7.42 ab 6.63 ab 6.51 ab 6.29 a 5.96 a 5.64 a
DS 7.77 a 7.02 a 6.92 a 6.37 a 5.95 a 5.85 a
20-30 cm NS 4.92 c 3.75 a 3.72 c 3.57 c 3.34 b 3.18 a
SS 5.36 b 4.64 a 4.02 bc 3.79 bc 3.58 b 3.20 a
WS 5.40 b 4.71 a 4.48 ab 4.03 b 3.94 ab 4.09 a
DS 5.93 a 4.01 a 4.94 a 4.74 a 4.53 a 4.05 a
30-40 cm NS 2.50 a 2.30 b 2.18 b 2.07 a 1.96 a
SS 2.66 a 2.61 ab 2.27 b 2.12 a 1.87 a
WS 2.74 a 2.80 ab 2.71 a 2.57 a 2.51 a
DS 2.87 a 2.93 a 2.81 a 2.38 a 2.35 a

表5

不同秸秆还田模式对0~40 cm土层土壤固碳能力的影响"

土层深度
Soil depth
处理
Treatment
总固碳能力
TCPC (g kg-1)
不同粒级团聚体固碳能力 Aggregate-associated CPC (g kg-1)
>5 mm 5-2 mm 2-1 mm 1-0.5 mm 0.5-0.25 mm <0.25 mm
0-10 cm NS 5.60 b 0.22 a 0.95 a 0.83 a 1.10 b 1.12 a 1.37 a
SS 6.07 a 0.54 a 1.10 a 0.98 a 1.53 a 0.94 a 0.98 ab
WS 5.79 ab 0.42 a 1.13 a 0.75 a 1.44 ab 1.10 a 0.96 b
DS 6.15 a 0.61 a 1.13 a 0.89 a 1.60 a 1.07 a 0.84 b
10-20 cm NS 5.87 c 0.22 a 0.95 b 0.94 a 1.50 a 0.98 a 1.28 a
SS 6.17 b 0.28 a 1.05 ab 1.03 a 1.70 a 0.98 a 1.13 ab
WS 6.37 ab 0.51 a 1.31 ab 0.47 a 1.70 a 0.82 a 0.57 c
DS 6.61 a 0.59 a 1.66 a 1.41 a 1.63 a 0.58 a 0.74 bc
20-30 cm NS 3.51 c 0.19 a 0.35 b 0.43 b 0.82 b 0.75 a 0.97 a
SS 3.82 c 0.19 a 0.55 ab 0.76 ab 0.84 b 0.67 a 0.82 a
WS 4.21 b 0.08 a 0.81 a 0.54 b 1.21 a 0.77 a 0.80 a
DS 4.73 a 0.14 a 0.99 a 1.01 a 1.30 a 0.65 a 0.64 a
30-40 cm NS 2.13 b 0.14 a 0.23 a 0.87 a 0.41 a 0.48 a
SS 2.17 b 0.09 b 0.22 a 0.94 a 0.46 a 0.47 a
WS 2.59 a 0.13 a 0.40 a 0.82 a 0.57 a 0.68 a
DS 2.57 a 0.08 b 0.33 a 0.74 a 0.73 a 0.69 a

表6

作物地上部还田量与SBD、SOC、SCS、MWD和TCPC之间的相关系数"

土层深度
Soil depth
指标
Indictor
秸秆还田量
SIR
土壤容重
SBD
平均重量直径
MWD
土壤有机碳含量
SOC
土壤有机碳储量
SCS
0-10 cm SBD -0.75*
MWD 0.81** -0.63*
SOC 0.79* -0.56** 0.59*
SCS 0.41 -0.05 0.26 0.80*
TCPC 0.75** -0.93** 0.66* 0.61* 0.05
10-20 cm SBD -0.70**
MWD 0.72** -0.49
SOC 0.81** -0.56* 0.72**
SCS 0.58* -0.12 0.89** 0.89*
TCPC 0.82** -0.26 0.69** 0.80** 0.80*
20-30 cm SBD -0.70*
MWD 0.83** -0.53
SOC 0.57* -0.45** 0.71*
SCS 0.41* -0.19 0.62* 0.96**
TCPC 0.85** -0.58* 0.87** 0.79** 0.69
30-40 cm SBD -0.56
MWD -0.77** 0.35
SOC -0.02 0.19 0.28
SCS 0.12 0.37 0.33 0.98**
TCPC 0.59* -0.13 -0.25 0.23 0.20

表7

不同秸秆还田模式对冬小麦和夏玉米产量的影响"

处理
Treatment
冬小麦产量
Wheat yield
(kg hm-2)
夏玉米产量 Maize yield
(kg hm-2)
周年产量Annual yield
(kg hm-2)
周年增产
Yield increases of annual crop
(kg hm-2)
小麦增产
Yield increases of wheat
(kg hm-2)
增产比例
Ratio of yield increases
(%)
玉米增产
Yield increases of maize
(kg hm-2)
增产比例 Ratio of yield increases
(%)
2016-2017
NS 8320.20 b 9257.65 b 17577.85 d
SS 8610.80 b 9975.31 ab 18586.11 c 1008.26c 290.60 c 28.8 717.66 b 71.2
WS 9902.50 a 9763.41 ab 19665.91 b 2088.06 b 1582.30 b 75.8 505.76 b 24.2
DS 10340.80 a 10491.05 a 20831.85 a 3254.00 a 2020.60 a 62.1 1233.40 a 37.9
2017-2018
NS 7186.20 b 9505.57 c 16691.77 c
SS 7303.93 ab 9897.48 b 17201.41 bc 509.64 b 117.73 b 23.1 391.91 b 76.9
WS 7696.10 a 9729.75 bc 17425.85 b 734.08 b 509.90 ab 69.5 224.18 b 30.5
DS 7759.90 a 10622.24 a 18382.14 a 1690.37 a 573.70 a 33.9 1116.67 a 66.1
[1] 赵永存, 徐胜祥, 王美艳, 史学正 . 中国农田土壤固碳潜力与速率: 认识、挑战与研究建议. 中国科学院院刊, 2018,33:191-197.
Zhao Y C, Xu S X, Wang M Y, Shi X Z . Carbon sequestration potential in Chinese cropland soils: review, challenge, and research suggestions. Bull Chin Acad Sci, 2018,33:191-197 (in Chinese with English abstract).
[2] Wiesmeier M, Hübner R, Spörlein P, Geuß U. Hangen E, Reischl A, Schilling B, Lützow M, Kögel-Knabner I . Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Glob Change Biol, 2014,20:653-665.
doi: 10.1111/gcb.12384 pmid: 24038905
[3] 田慎重, 王瑜, 张玉凤, 边文范, 董亮, 罗加法, 郭洪海 . 旋耕转深松和秸秆还田增加农田土壤团聚体碳库. 农业工程学报, 2017,33(24):133-140.
Tian S Z, Wang Y, Zhang Y F, Bian W F, Dong L, Luo J F, Guo H H . Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon. Trans CSAE, 2017,33(24):133-140 (in Chinese with English abstract).
[4] 宓文海, 吴良欢, 马庆旭, 张宣, 刘彦伶 . 有机物料与化肥配施提高黄泥田水稻产量和土壤肥力. 农业工程学报, 2016,32(13):103-108.
Mi W H, Wu L H, Ma Q X, Zhang X, Liu Y L . Combined application of organic materials and inorganic fertilizers improving rice yield and soil fertility of yellow clayey paddy soil. Trans CSAE, 2016,32(13):103-108 (in Chinese with English abstract).
[5] Prasad J V N S, Rao C S, Srinivas K, Jyothi C N, Venkateswarlu B, Ramachandrappa B K, Dhanapai G N, Ravichandra K, Mishra P K . Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in alfisols of semi-arid tropics of southern India. Soil Till Res, 2016,156:131-139.
doi: 10.1016/j.still.2015.10.013
[6] Dikgwatlhe S B, Chen Z D, Lal R, Zhang H L, Chen F . Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat-maize cropping system in the North China Plain. Soil Till Res, 2014,144:110-118.
doi: 10.1016/j.still.2014.07.014
[7] 李玮, 乔玉强, 陈欢, 曹承富, 杜世州, 赵竹 . 秸秆还田和施肥对砂姜黑土理化性质及小麦-玉米产量的影响. 生态学报, 2014,34:5052-5061.
Li W, Qiao Y Q, Chen H, Cao C F, Du S Z, Zhao Z . Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields. Acta Ecol Sin, 2014,34:5052-5061 (in Chinese with English abstract).
[8] Zhao H L, Shar A G, Li S, Chen Y L, Shi J L, Zhang X Y, Tian X H . Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Till Res, 2018,175:178-186.
doi: 10.1016/j.still.2017.09.012
[9] 辛励, 刘锦涛, 刘树堂, 陈延玲, 南镇武, 袁铭章, 陈晶培 . 小麦-玉米轮作体系下长期定位秸秆还田对籽粒产量及品质的影响. 华北农学报, 2016,31(6):164-170.
Xin L, Liu J T, Liu S T, Chen Y L, Nan Z W, Yuan M Z, Chen J P . Effects of combined application of straw and organic fertilizer on grain yield and quality under wheat maize rotation system. Acta Agric Boreali-Sin, 2016,31(6):164-170 (in Chinese with English abstract).
[10] 许菁, 贺贞昆, 冯倩倩, 张亚运, 李晓莎, 许姣姣, 林祥, 韩惠芳, 宁堂原, 李增嘉 . 耕作方式对冬小麦-夏玉米光合特性及周年产量形成的影响. 植物营养与肥料学报, 2017,23:101-109.
Xu J, He Z K, Feng Q Q, Zhang Y Y, Li X S, Xu J J, Lin X, Han H F, Ning T Y, Li Z J . Effect of tillage method on photosynthetic characteristics and annual yield formation of winter wheat- summer maize cropping system. J Plant Nutr Fert, 2017,23:101-109 (in Chinese with English abstract)
[11] Soon Y K, Lupwayi N Z . Straw management in a cold semi-arid region: impact on soil quality and crop productivity. Field Crops Res, 2012,139:39-46.
doi: 10.1016/j.fcr.2012.10.010
[12] 张鹏, 贾志宽, 王维, 路文涛, 高飞, 聂俊峰 . 秸秆还田对宁南半干旱地区土壤团聚体特征的影响. 中国农业科学, 2012,45:1513-1520.
Zhang P, Jia Z K, Wang W, Lu W T, Gao F, Nie J F . Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China. Sci Agric Sin, 2012,45:1513-1520 (in Chinese with English abstract).
[13] Song K, Yang J, Xue Y, Lu W, Zheng X, Pan J . Influence of tillage practices and straw return on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system. Sci Rep, 2016,6:36602.
doi: 10.1038/srep36602 pmid: 27812038
[14] 葛顺峰, 彭玲, 任饴华, 姜远茂 . 秸秆和生物质炭对苹果园土壤容重、阳离子交换量和氮素利用的影响. 中国农业科学, 2014,47:366-373.
Ge S F, Peng L, Ren Y H, Jiang Y M . Effect of straw and biochar on soil bulk density, cation exchange capacity and nitrogen absorption in apple orchard soil. Sci Agric Sin, 2014,47:366-373 (in Chinese with English abstract).
[15] 俞巧钢, 杨艳, 邹平, 叶静, 张康宁, 顾国平, 马军伟, 符建荣 . 有机物料对稻田土壤团聚体及有机碳分布的影响. 水土保持学报, 2017,31(6):170-175.
Yu Q G, Yang Y, Zou P, Ye J, Zhang K N, Gu G P, Ma J W, Fu J R . Effect of organic materials application on soil aggregate and soil organic carbon in rice fields. J Soil Water Conserv, 2017,31(6):170-175 (in Chinese with English abstract).
[16] Fonte S J, Quintero D C, Velásquez E, Lavelle P . Interactive effects of plants and earthworms on the physical stabilization of soil organic matter in aggregates. Plant Soil, 2012,359:205-214.
doi: 10.1007/s11104-012-1199-2
[17] 薛斌, 黄丽, 鲁剑巍, 李小坤, 殷志遥, 刘智杰, 陈涛 . 连续秸秆还田和免耕对土壤团聚体及有机碳的影响. 水土保持学报, 2018,32(1):182-189.
Xue B, Huang L, Lu J W, Li X K, Yin Z Y, Liu Z J, Chen T . Effects of continuous straw returning and no-tillage on soil aggregates and organic carbon. J Soil Water Conserv, 2018,32(1):182-189 (in Chinese with English abstract).
[18] Decaëns T . Degradation dynamics of surface earthworm casts in grasslands of the eastern plains of Colombia. Biol Fert Soils, 2000,32:149-156.
doi: 10.1007/s003740000229
[19] Lal R . Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304:1623-1627.
[20] Wang X J, Jia Z K, Liang L Y, Zhao Y F, Yang B P, Ding R X, Wang J P, Nie J F . Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Res, 2018,218:11-17.
doi: 10.1016/j.fcr.2017.12.003
[21] Stewart C E, Paustian K, Conant R T, Plante A F, Six J . Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 2007,86:19-31.
doi: 10.1007/s10533-007-9140-0
[22] Xu M G, Lou Y L, Sun X L, Wang W, Baniyamuddin M, Zhao K . Soil organic carbon active fractions as early indicators for total carbon change under straw return. Biol Fert Soils, 2011,47:745-752.
doi: 10.1007/s00374-011-0579-8
[23] Liu C, Lu M, Cui J, Fang C M . Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biol, 2014,20:1-16.
doi: 10.1111/gcb.12517 pmid: 24395454
[24] 李硕, 李有兵, 王淑娟, 师江澜, 田霄鸿 . 关中平原作物秸秆不同还田方式对土壤有机碳和碳库管理指数的影响. 应用生态学报, 2015,26:1215-1222.
Li S, Li Y B, Wang S J, Shi J L, Tian X H . Effects of different straw-returning regimes on soil organic carbon and carbon pool management index in Guanzhong plain, northwest China. Chin J Appl Ecol, 2015,26:1215-1222 (in Chinese with English abstract).
[25] 黄耀, 刘世梁, 沈其荣, 宗良纲 . 环境因子对农业土壤有机碳分解的影响. 应用生态学报, 2002,13:709-714.
Huang Y, Liu S L, Shen Q R, Zong L G . Influence of environmental factors on the decomposition of organic carbon in agricultural soils. Chin J Appl Ecol, 2002,13:709-714 (in Chinese with English abstract).
[26] 代文才, 高明, 兰木羚, 黄容, 王金柱, 王子芳, 韩晓飞 . 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律. 中国生态农业学报, 2017,25:188-199.
Dai W C, Gao M, Lan M L, Huang R, Wang J Z, Wang Z F, Han X F . Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields. Chin J Eco-Agric, 2017,25:188-199 (in Chinese with English abstract).
[27] 张艺, 尹力初, 戴齐 . 后续施肥措施改变对红壤性水稻土团聚体有机碳组分的影响. 水土保持学报, 2016,30(6):278-283.
Zhang Y, Yin L C, Dai Q . Effects of following-up fertilization reforming on the fractions of aggregate-associated organic carbon in red paddy soils. J Soil Water Conserv, 2016,30(6):278-283 (in Chinese with English abstract).
[28] Six J, Elliott E T, Paustian K . Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem, 2000,32:2099-2103.
doi: 10.1016/S0038-0717(00)00179-6
[29] Haile S G ,Nair P K R,Nair V D. Carbon storage of different soil-size fractions in Florida silvopastoral systems. Environ Qual, 2008,37:1789-1797.
doi: 10.2134/jeq2007.0509 pmid: 18689740
[30] Zhu L Q, Hu N J, Zhang Z W, Xu J L, Tao B R, Meng Y L . Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena, 2015,135:283-289.
doi: 10.1016/j.catena.2015.08.008
[31] 杨晨璐, 刘兰清, 王维钰, 任广鑫, 冯永忠, 杨改河 . 麦玉复种体系下秸秆还田与施氮对作物水氮利用及产量的效应研究. 中国农业科学, 2018,51:1664-1680.
Yang C L, Liu L Q, Wang W Y, Ren G X, Feng Y Z, Yang G H . Effects of the application of straw returning and nitrogen fertilizer on crop yields, water and nitrogen utilization under wheat- maize multiple cropping system. Sci Agric Sin, 2018,51:1664-1680 (in Chinese with English abstract).
[32] 庞党伟, 陈金, 唐玉海, 尹燕枰, 杨东清, 崔正勇, 郑孟静, 李勇, 王振林 . 玉米秸秆还田方式和氮肥处理对土壤理化性质及冬小麦产量的影响. 作物学报, 2016,42:1689-1699.
Pang D W, Chen J, Tang Y H, Yin Y P, Yang D Q, Cui Z Y, Zheng M J, Li Y, Wang Z L . Effect of returning methods of maize straw and nitrogen treatments on soil physicochemical property and yield of winter wheat. Acta Agron Sin, 2016,42:1689-1699 (in Chinese with English abstract).
[33] 申丽霞, 王璞, 兰林旺, 孙西欢 . 施氮对夏玉米碳氮代谢及穗粒形成的影响. 植物营养与肥料学报, 2007,13:1074-1079.
Shen L X, Wang P, Lan L W, Sun X H . Effect of nitrogen supply on carbon-nitrogen metabolism and kernel set in summer maize. Plant Nutr Fert Sci, 2007,13:1074-1079 (in Chinese with English abstract).
[1] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436.
[2] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[3] 胥生荣,张恩和,马瑞丽,王琦,刘青林,崔佳佳. 不同种植年限对枸杞根系及土壤环境的影响[J]. 作物学报, 2018, 44(11): 1725-1732.
[4] 谢迎新,靳海洋,李梦达,翟羽雪,王永华,谢耀丽,李向东,夏来坤,王晨阳,郭天财,贺德先. 周年耕作方式对砂姜黑土农田土壤养分及作物产量的影响[J]. 作物学报, 2016, 42(10): 1560-1568.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!