欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1250-1259.doi: 10.3724/SP.J.1006.2019.82051

• 耕作栽培·生理生化 • 上一篇    下一篇

耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响

冯珺珩1,黄金凤1,刘天奇1,曹凑贵1,2,李成芳1,2,*()   

  1. 1 农业部长江中游作物生理生态与耕作重点实验室/华中农业大学植物科学技术学院, 湖北武汉 430070
    2 长江大学/长江大学主要粮食作物产业化湖北省协同创新中心, 湖北荆州 434023
  • 收稿日期:2018-10-21 接受日期:2019-01-19 出版日期:2019-08-12 网络出版日期:2019-03-29
  • 通讯作者: 李成芳
  • 基金资助:
    本研究由国家自然科学基金项目(31671637);国家重点研发计划项目(2017YFD0301403);湖北省自然科学基金项目资助(2018CFB608)

Effects of tillage and straw returning methods on N2O emission from paddy fields, nitrogen uptake of rice plant and grain yield

FENG Jun-Heng1,HUANG Jin-Feng1,LIU Tian-Qi1,CAO Cou-Gui1,2,LI Cheng-Fang1,2,*()   

  1. 1 MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2 Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434023, Hubei, China
  • Received:2018-10-21 Accepted:2019-01-19 Published:2019-08-12 Published online:2019-03-29
  • Contact: Cheng-Fang LI
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31671637);the National Key Research and Development Program of China(2017YFD0301403);the Natural Science Foundation of Hubei Province(2018CFB608)

摘要:

保护性耕作是改善农田土壤肥力的重要举措, 然而其对作物氮吸收与产量的作用尚不明确。为此, 本试验于2016—2017年稻季在湖北省武穴市花桥镇, 设置常规翻耕与免耕两种耕作方式以及前茬作物秸秆全量还田与不还田两种秸秆还田方法, 研究耕作与秸秆还田方式对稻田土壤N2O排放、根系酶活性、水稻氮吸收与产量的影响。结果表明, 耕作方式显著影响土壤N2O排放, 但不影响根系硝酸还原酶与谷氨酰胺合成酶活性、水稻氮吸收与产量。与翻耕处理相比, 免耕处理2016年和2017年土壤N2O排放量分别显著提高了12.5%~18.2%和21.1%~38.6%。秸秆还田显著影响土壤N2O排放量、根系酶活性、水稻氮吸收与产量。相对于秸秆不还田处理, 秸秆还田处理2016年和2017年土壤N2O排放量分别显著提高了38.5%~45.5%和13.1%~29.5%。秸秆还田处理相对于不还田处理根系硝酸还原酶与谷氨酰胺合成酶活性分别显著增加了6.7%~45.9%和9.0%~46.7%, 水稻氮吸收量提高了12.5%~26.0%, 产量增加了9.4%~12.6%。本文认为, 虽然秸秆还田提高了水稻氮吸收与产量, 但也促进了土壤N2O的排放, 因此在评估保护性耕作稻田温室效应时应加强对温室气体(CH4和N2O)排放和土壤碳固定影响的长期监测, 以期为发展低碳稻作提供理论依据和技术支撑。

关键词: 免耕, 根系, 硝酸还原酶, 谷氨酰胺合成酶, 温室气体

Abstract:

Conservation tillage is an important practice to improve agricultural soil fertility. However, the effects of this practice on crop nitrogen uptake and grain yield remain unknown. Here, a 2-year field experiment was conducted to investigate the effects of different tillage (conventional intensive tillage [CT] and no-tillage [NT]) and straw returning methods (preceding crop straw returning [S] and removal [NS]) on soil N2O emission, root nitrate reductase and glutamine synthetase activities, nitrogen uptake of rice plants and grain yield in the 2016 and 2017 rice growing seasons at Huaqiao town, Wuxue county, Hubei province. The tillage practices and straw returning methods had significant effects on the N2O emission from paddy soil. Compared with CT treatment, NT treatment enhanced the N2O emission by 12.5%-18.2% in 2016 and 21.1%-38.6% in 2017. S treatments increased the soil N2O emission by 38.5%-45.5% in 2016 and 13.1%-29.5% in 2017 as compared with NS treatments. Straw returning methods had significant effects on root nitrate reductase and glutamine synthetase activities, as well as on nitrogen uptake of rice plants and grain yield. Compared with NS treatments, S treatments had 6.7%-45.9% higher root nitrate reductase activity and 9.0%-46.7% higher root glutamine synthetase activity, resulting in 12.5%-26.0% higher nitrogen uptake of rice plants and 9.4%- 12.6% greater grain yield. Our results indicate that straw returning significantly increases nitrogen uptake and grain yield, and also promotes soil N2O emissions, suggesting that the effects of long-term NT and straw returning on global warming potential and soil carbon sequestration should be taken into account when assessing the global warming potential of these practices.

Key words: no-tillage, root, nitrate reductase, glutamine synthetase, greenhouse gas

图1

2016-2017年稻季日均气温变化"

表1

2016-2017年水稻不同生育期土壤铵态氮和硝态氮含量变化"

处理
Treatment
NH4+-N NO3--N
分蘖期
Tillering
stage
拔节期
Boosting
stage
齐穗期
Heading
stage
成熟期
Mature
stage
分蘖期
Tillering
stage
拔节期
Boosting stage
齐穗期
Heading stage
成熟期
Mature
stage
2016
CTNS 19.24±2.26 11.53±4.03 12.71±1.11 6.51±0.70 2.07±0.12 3.76±0.57 4.72±0.32 1.52±0.24
CTS 21.88±2.56 14.61±2.13 16.04±0.79 8.71±0.31 1.82±0.11 4.95±0.23 5.94±0.30 2.09±0.19
NTNS 20.04±1.09 15.84±3.17 15.50±0.47 7.85±0.25 2.10±0.20 4.91±0.16 5.52±0.30 2.34±0.22
NTS 19.51±0.72 18.60±2.64 18.13±0.48 9.78±0.10 2.04±0.28 5.67±0.12 7.71±0.45 3.21±0.33
ANOVA
T ns ** ** ** ns ** ** **
S ns ** ** * ns * ** **
T×S ns ns * ns ns ns ns ns
2017
CTNS 6.32±1.12 12.62±1.72 8.60±0.66 6.27±0.86 4.17±0.37 4.89±0.47 1.90±0.32 1.81±0.19
CTS 5.73±1.63 13.89±1.50 10.80±0.78 7.44±0.23 3.66±0.33 6.31±0.31 2.50±0.25 2.45±0.01
NTNS 7.21±1.21 15.81±1.55 10.01±0.47 7.87±0.39 3.59±0.44 5.91±0.67 2.20±0.30 1.99±0.10
NTS 6.21±0.51 17.56±2.46 13.14±0.71 9.45±0.83 2.90±0.35 7.83±0.33 2.93±0.22 2.95±0.18
ANOVA
T ns * * ** ns ** ns *
S ns ** ** ** ns ** ** *
T×S ns ns ns ns ns ns ns ns

图2

2016-2017年不同处理稻田土壤N2O通量的季节变化 CTNS: 翻耕+前季作物秸秆不还田; CTS: 翻耕+前季作物秸秆全量还田; NTNS: 免耕+前季作物秸秆不还田; NTS: 免耕+前季作物秸秆全量还田。实线箭头表示施肥, 虚线箭头表示排水。"

表2

2016-2017年不同处理稻田土壤N2O累积排放量"

处理
Treatment
N2O累积排放量
2016 2017
翻耕+前季作物秸秆不还田 CTNS 0.22 ± 0.02 0.44±0.13
翻耕+前季作物秸秆全量还田 CTS 0.32 ± 0.05 0.57±0.02
免耕+前季作物秸秆不还田 NTNS 0.26 ± 0.02 0.61±0.18
免耕+前季作物秸秆全量还田 NTS 0.36 ± 0.05 0.69±0.12
ANOVA
耕作方式Tillage practices (T) * **
秸秆管理Straw managements (S) * *
T×S ns ns

表3

2016-2017年水稻不同生育期不同处理根系硝酸还原酶与谷氨酰胺合成酶活性的变化"

处理
Treatment
硝酸还原酶 Nitrate reductase (μg NO2- g-1 FW h-1) 谷氨酰胺合成酶Glutamine synthease (μmol g-1 FW h-1)
分蘖期
Tillering
stage
拔节期
Boosting
stage
齐穗期
Heading
stage
成熟期
Mature
stage
分蘖期
Tillering
stage
拔节期
Boosting
stage
齐穗期
Heading
stage
成熟期
Mature
stage
2016
CTNS 0.87±0.10 0.63±0.22 0.55±0.10 0.13±0.05 17.40±2.98 29.87±7.70 22.85±1.73 5.05±1.95
CTS 0.92±0.03 0.74±0.08 0.63±0.08 0.21±0.05 20.53±3.30 32.58±6.62 26.74±2.04 7.39±1.31
NTNS 0.70±0.13 0.55±0.09 0.55±0.04 0.08±0.06 19.83±2.11 30.69± 4.94 27.51±2.10 4.79±1.23
NTS 0.80±0.13 0.78±0.07 0.60±0.07 0.14±0.10 21.85±3.13 33.46±6.77 29.30±2.48 7.05±0.87
ANOVA
T * ns ns ns * ns ns ns
S ** ** * ** * * ns **
T×S ns ns ns ns ns ns ns ns
2017
CTNS 0.98±0.08 0.62±0.04 0.31±0.01 0.15±0.03 26.78±8.68 26.61±5.02 26.76±4.07 10.66±0.74
CTS 0.94±0.06 0.80±0.07 0.56±0.11 0.17±0.02 25.56±8.81 38.36±6.66 30.26±2.29 12.66±2.15
NTNS 0.84±0.17 0.53±0.03 0.43±0.10 0.05±0.03 29.86±10.5 29.43±1.43 20.53±4.62 8.78±0.95
NTS 0.76±0.12 0.75±0.12 0.52±0.09 0.08±0.04 27.64±7.26 41.97±8.78 29.40±5.15 9.35±1.46
ANOVA
T ns ns ns * ns ns ns ns
S ns ** ** * ns * * *
T×S ns ns ns ns ns ns ns ns

表4

2016-2017年不同处理水稻氮吸收量与产量的变化"

年份
Year
处理
Treatment
氮吸收量
N uptake
产量
Grain yield
2016 翻耕+前季作物秸秆不还田 CTNS 156.51±15.15 b 7379±252 b
翻耕+前季作物秸秆全量还田 CTS 179.81±11.69 a 8795±306 a
免耕+前季作物秸秆不还田 NTNS 140.86±20.13 b 7318±145 c
免耕+前季作物秸秆全量还田 NTS 194.86±18.89 a 7752±143 ab
ANOVA
耕作方式Tillage practices (T) ns ns
秸秆管理Straw managements (S) ** *
T×S * ns
2017 翻耕+前季作物秸秆不还田 CTNS 203.32±9.99 bc 7302±338 b
翻耕+前季作物秸秆全量还田 CTS 220.25±11.54 a 8086±177 a
免耕+前季作物秸秆不还田 NTNS 184.34±10.54 c 7549±122 b
免耕+前季作物秸秆全量还田 NTS 215.90±8.97 a 8168±41 a
ANOVA
耕作方式Tillage practices (T) ns ns
秸秆管理Straw managements (S) * *
T×S * ns
[1] Busari M A, Salako F K . Soil hydraulic properties and maize root growth after application of poultry manure under different tillage systems in Abeokuta, southwestern Nigeria. Arch Agron Soil Sci, 2015,61:223-237.
doi: 10.1080/03650340.2014.924620
[2] Scopel E, Triomphe B, Affholder F, Da Silva F A M, Corbeels M, Xavier J H V, Lahmar R, Recous S, Bernoux M, Blanchart E, Mendes L D C, De Tourdonnet S . Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts: a review. Agron Sustain Dev, 2013,33:113-130.
doi: 10.1007/s13593-012-0106-9
[3] Gathala M K, Ladha J K, Saharawat Y S, Kurmar V, Kumar V, Sharma P K . Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice-wheat rotation. Soil Sci Soc Am J, 2011,75:1851-1862.
doi: 10.2136/sssaj2010.0362
[4] Guo L J, Zhang Z S, Wang D D, Li C F, Cao C G . Effects of short-term conservation management practices on soil organic carbon fractions and microbial community composition under a rice-wheat rotation system. Biol Fert Soils, 2015,51:65-75
doi: 10.1007/s00374-014-0951-6
[5] IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013
[6] Zhang Z S, Chen J, Liu T Q, Cao C G, Li C F . Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmos Environ, 2016,144:274-281.
doi: 10.1016/j.atmosenv.2016.09.003
[7] Zhang J S, Zhang F P, Yang J H, Wang J P, Cai M L, Li C F, Cao C G . Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agric Ecosyst Environ, 2011,140:164-173.
doi: 10.1016/j.agee.2010.11.023
[8] Rochette P . No-till only increases N2O emissions in poorly- aerated soils. Soil Tillage Res, 2008,101:97-100.
doi: 10.1016/j.still.2008.07.011
[9] Venterea R T, Bijesh M, Dolan M S . Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. J Environ Qual, 2011,40:1521-1531.
doi: 10.2134/jeq2011.0039
[10] 张岳芳, 郑建初, 陈留根, 王子臣, 朱普平, 盛婧, 王亚雷 . 麦秸还田与土壤耕作对稻季CH4和N2O排放的影响. 生态环境学报, 2009,18:2334-2338.
Zhang Y F, Zheng J C, Chen L G, Wang Z C, Zhu P P, Sheng J, Wang Y L . Effects of wheat straw returning and soil tillage on CH4 and N2O emissions in paddy season. Ecol Environ Sci, 2009,18:2334-2338 (in Chinese with English abstract).
[11] Weier K L, Doran J W, Power J F, Walters D T . Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water available carbon and nitrate. Soil Sci Soc Am J, 1993,57:66-72.
doi: 10.2136/sssaj1993.03615995005700010013x
[12] Jensen E S . Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues. Biol Fert Soils, 1997,24:39-44.
doi: 10.1007/BF01420218
[13] Pittelkow C M, Liang X, Linquist B A, van Groenigen K J, Lee J, Lundy M E, van Gestel N, Six J, Venterea R T, van Kessel C . Productivity limits and potentials of the principles of conservation agriculture. Nature, 2015,517:365-368.
[14] Li C, Zhang Z, Guo L, Cai M, Cao C . Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmos Environ, 2013,80:438-444.
doi: 10.1016/j.atmosenv.2013.08.027
[15] Zheng X, Wang M, Wang Y, Shen R, Li J, Heyer J, Kogge M, Li L, Jin J . Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields. Adv Atmos Sci, 1998,15:569-579.
doi: 10.1007/s00376-998-0033-5
[16] 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
Lu R K. Analysis Methods for Soil Agricultural and Chemistry. Beijing: China Agricultural Science and Technology Press, 2000 (in Chinese).
[17] Ussiri D A, Lal R, Jarecki M K . Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Tillage Res, 2009,104:247-255.
doi: 10.1016/j.still.2009.03.001
[18] Six J, Ogle S M, Conant R T, Mosier A R, Paustian K . The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Boil, 2004,10:155-160.
doi: 10.1111/gcb.2004.10.issue-2
[19] Liu X J, Mosier A R, Halvorson A D, Zhang F S . The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant Soil, 2006,280:177-188.
doi: 10.1007/s11104-005-2950-8
[20] Harada H, Kobayashi H, Shindo H . Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: life-cycle inventory analysis. Soil Sci Plant Nutr, 2007,53:668-677.
doi: 10.1111/j.1747-0765.2007.00174.x
[21] Abdalla M, Osborne B, Lanigan G, Forristal D, Williams M, Smith P, Jones M B . Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manage, 2013,29:199-209.
doi: 10.1111/sum.2013.29.issue-2
[22] Shan J, Yan X Y . Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos Environ, 2013,71:170-175.
doi: 10.1016/j.atmosenv.2013.02.009
[23] 熊淑萍, 吴克远, 王小纯, 吴懿鑫, 杜盼, 马新明 . 不同氮效率小麦品种苗期根系氮代谢及其吸收能力差异分析. 麦类作物学报, 2016,36:325-331.
Xiong S P, Wu K Y, Wang X C, Wu Y X, Du P, Ma X M . Analysis of nitrogen metabolism in roots and uptake characteristic of wheat cultivars with different nitrogen efficiency at seedling stage. J Triticeae Crops, 2016,36:325-331 (in Chinese with English abstract).
[24] 周佳民, 徐世宏, 江立庚 . 免耕对水稻根系生长及根际环境的影响: II. 免耕对水稻根系保护酶活性的影响. 中国农学通报, 2009,25(14):118-121.
Zhou J M, Xu S H, Jiang L G . Influence of no tillage on root growth and rhizosphere environment in rice: II. Influence of no tillage on activities of antioxidant enzymes in root. Chin Agric Sci Bull, 2009,25(14):118-121 (in Chinese with English abstract).
[25] 隋鹏祥, 张文可, 梅楠, 田平, 王英俨, 孙悦, 孟广鑫, 苏业涵, 齐华 . 不同秸秆还田方式对春玉米产量、水分利用和根系生长的影响. 水土保持学报, 2018,32(4):255-261.
Sui P X, Zhang W K, Mei N, Tian P, Wang Y Y, Sun Y, Meng G X, Su Y H, Qi H . Effects of different straw returning methods and spring maize yield, water use and root growth. J Soil Water Conserv, 2018,32(4):255-261 (in Chinese with English abstract).
[26] 李国清, 石岩 . 深松和翻耕对旱地小麦花后根系衰老及产量的影响. 麦类作物学报, 2012,32:500-502.
Li G Q, Shi Y . Effect of subsoiling tillage and ploughing tillage on the root senescence after anthesis and yield of wheat in dry-land. J Triticeae Crops, 2012,32:500-502 (in Chinese with English abstract).
[27] Forde B G . Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol, 2002,53:203-224.
doi: 10.1146/annurev.arplant.53.100301.135256
[28] 熊瑶, 陈建军, 王维 . 秸秆还田对烤烟根系活力和碳氮代谢生理特性的影响. 中国农学通报, 2012,28(30):65-70.
Xiong Y, Chen J J, Wang W . Effects of straw-returning on root activity and physiological characteristics of carbon-nitrogen metabolism of flu-cured tobacco. Chin Agric Sci Bull, 2012,28(30):65-70 (in Chinese with English abstract).
[29] 陈仁天, 唐茂艳, 赵荣德, 江立庚, 王强, 陈雷, 梁天锋 . 耕作方式和大田水分管理对水稻氮素吸收利用的影响. 南方农业学报, 2012,43:942-946.
Chen L T, Tang M Y, Zhao R D, Jiang L G, Wang Q, Chen L, Liang T F . Influence of field tillage patterns and water management on nitrogen assimilation and utilization in rice. J Southern Agric, 2012,43:942-946 (in Chinese with English abstract).
[30] 梁天锋, 徐世宏, 刘开强, 王殿君, 梁和, 董登峰, 韦善清, 莫润秀, 曾可, 江立庚 . 耕作方式对还田稻草氮素释放及水稻氮素利用的影响. 中国农业科学, 2009,42:3564-3570.
Liang T F, Xu S H, Liu K Q, Wang D J, Liang H, Dong D F, Wei S Q, Mo R X, Zeng K, Jiang L G . Influence of tillage patterns on incorporated straw nitrogen release and nitrogen utilization of rice. Sci Agric Sin, 2009,42:3564-3570 (in Chinese with English abstract).
[31] Huang M, Zou Y B, Jiang P, Xia B, Feng Y, Cheng Z, Mo Y . Effect of tillage on soil and crop properties of wet-seeded flooded rice. Field Crops Res, 2012,129:28-38.
doi: 10.1016/j.fcr.2012.01.013
[32] Malhi S S, Nyborg M, Solberg E D, McConkey B, Dyck M, Puurveen D . Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada. Biol Fert Soils, 2011,47:785-800.
doi: 10.1007/s00374-011-0587-8
[33] Brennan J, Hackett R, McCabe T, Grant J, Fortune R A, Forristal P D . The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool atlantics climate. Eur J Agron, 2014,54:61-69.
doi: 10.1016/j.eja.2013.11.009
[34] Malhi S S, Lemke R, Wang Z H, Chhabra B S . Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res, 2006,90:171-183.
doi: 10.1016/j.still.2005.09.001
[35] Liebig M A, Tanaka D L, Wienhold B J . Tillage and cropping effects on soil quality indicators in the northern Great Plains. Soil Tillage Res, 2004,78:131-141.
doi: 10.1016/j.still.2004.02.002
[36] 杨宪龙, 路永莉, 同延安, 林文, 梁婷 . 长期施氮和秸秆还田对小麦-玉米轮作体系土壤氮素平衡的影响. 植物营养与肥料学报, 2013,19:65-73.
Yang X L, Lu Y L, Tong Y A, Lin W, Liang T . Effects of long-term application and straw returning on N budget under wheat-maize rotation system. Plant Nutr Fert Sci, 2013,19:65-73 (in Chinese with English abstract).
[37] Zhang Z S, Guo L J, Liu T Q, Li C F, Cao C G . Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice-wheat cropping systems in central China. Atmos Environ, 2015,122:636-644.
doi: 10.1016/j.atmosenv.2015.09.065
[38] 朱利群, 张大伟, 卞新民 . 连续秸秆还田与耕作方式轮换对稻麦轮作田土壤理化性状变化及水稻产量构成的影响. 土壤通报, 2011,42(1):81-85.
Zhu L Q, Zhang D W, Bian X M . Effect of continuous returning straws to field and shifting different tillage methods on changes of physical-chemical properties of soil and yield components of rice. Chin J Soil Sci, 2011,42(1):81-85 (in Chinese with English abstract).
[39] 谢瑞芝, 李少昆, 李小君, 金亚征, 王克如, 初震东, 高世菊 . 中国保护性耕作研究分析: 保护性耕作与作物生产. 中国农业科学, 2007,40:1914-1924.
Xie R Z, Li S K, Li X J, Jin Y Z, Wang K R, Chu Z D, Gao S J . The analysis of conservation tillage in China: conservation tillage and crop production. Sci Agric Sin, 2007,40:1914-1924 (in Chinese with English abstract).
[40] Li C F, Zhou D N, Kui Z K, Zhang Z S, Wang J P, Cai M L, Cao C G . Effects of tillage and nitrogen fertilizers on CH4 and CO2 emissions and soil organic carbon in paddy fields of central China. PLoS One, 2012,7:e34642.
doi: 10.1371/journal.pone.0034642
[41] 李成芳, 寇志奎, 张枝盛, 曹凑贵, 吴海亚, 梅金安, 翟中兵, 张丛德, 魏坦雄, 刘诗晴, 夏起昕 . 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响. 农业环境科学学报, 2011,30:2362-2367.
Li C F, Kou Z K, Zhang Z S, Cao C G, Wu H Y, Mei J A, Zhai Z B, Zhang C D, Wei T X, Liu S Q, Xia Q X . Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields. J Agro-Environ Sci, 2011,30:2362-2367 (in Chinese with English abstract).
[1] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[2] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[3] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[4] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[5] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727.
[6] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[7] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[8] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响[J]. 作物学报, 2020, 46(10): 1605-1616.
[9] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[10] 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101.
[11] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[12] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响[J]. 作物学报, 2019, 45(10): 1565-1575.
[13] 严青青,张巨松,李星星,王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1): 100-110.
[14] 周健飞,武云杰,薛刚,张安乾,田培,彭玉富,杨铁钊. 烤烟成熟期烟叶GS同工酶活性与氮素运转的关系[J]. 作物学报, 2019, 45(1): 111-117.
[15] 李荣发,刘鹏,杨清龙,任昊,董树亭,张吉旺,赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响[J]. 作物学报, 2018, 44(7): 1032-1042.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!