欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (4): 503-512.doi: 10.3724/SP.J.1006.2020.94082

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性

衡友强,游西龙,王艳()   

  1. 新疆大学生命科学与技术学院 / 新疆生物资源与基因工程重点实验室, 新疆乌鲁木齐 830046
  • 收稿日期:2019-06-04 接受日期:2019-12-26 出版日期:2020-04-12 网络出版日期:2020-01-15
  • 通讯作者: 王艳
  • 作者简介:E-mail: hengyouqiang706567@163.com
  • 基金资助:
    本研究由新疆生物资源基因工程重点实验室开放课题(2017D04026);国家自然科学基金项目资助(31860061)

Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco

HENG You-Qiang,YOU Xi-Long,WANG Yan()   

  1. Xinjiang Key Laboratory of Biological resources and Genetic Engineering / College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Received:2019-06-04 Accepted:2019-12-26 Published:2020-04-12 Published online:2020-01-15
  • Contact: Yan WANG
  • Supported by:
    This study was supported by the Xinjiang Key Laboratory of Biological Resources Genetic Engineering(2017D04026);the National Natural Science Foundation of China(31860061)

摘要:

为明确一年生草本盐生植物费尔干猪毛菜(Salsola ferganica Drob.)病程相关蛋白基因SfPR1a (GenBank登录号为JQ670917)是否参与了植物对逆境胁迫的响应, 采用qRT-PCR检测了该基因在不同组织部位和脱落酸(ABA)、茉莉酸(JAs)、乙烯合成直接前体(ACC)等相关激素胁迫及NaCl处理下的表达规律, 同时对转基因烟草在盐、旱及丁香假单胞菌等胁迫下的抗性进行了鉴定。结果显示, SfPR1a基因在费尔干猪毛菜根中的表达量显著高于茎叶中, 且受到ABA、JAs、ACC、NaCl的积极诱导; 干旱胁迫下, 转基因烟草的丙二醛(MDA)含量显著低于野生型烟草, 显示出较强的抗旱表型; 盐胁迫下, 异源表达SfPR1a的转基因烟草幼苗生长显著优于野生型烟草; 丁香假单胞菌攻毒后的转基因烟草叶片呈现严重的坏死反应, 但植株的整体抗性表型显著优于野生型烟草; 亚细胞定位结果显示该蛋白定位于植物细胞质外体空间。以上结果表明, 费尔干猪毛菜病程相关蛋白SfPR1a基因参与了植物对非生物及生物胁迫的抗性。

关键词: 病程相关蛋白基因SfPR1a, 表达规律, 转基因烟草, 抗性功能, 亚细胞定位

Abstract:

In order to investigate whether SfPR1a, a pathogenesis-related protein gene from an annual halophytic species Salsola ferganica Drob., was involved in the response to plant defense, qRT-PCR was employed to detect its expression patterns under abscisic acid (ABA), jasmonic acid (JAs), ethylene synthesis direct precursor (ACC), and NaCl treatments. We also identified resistances to salt, drought and Pseudomonas syringae tomato (PstDC3000) of transgenic tobacco were identified. The expression of SfPR1a gene in roots was significantly higher than that in shoots, and positively induced by ABA, JAs, ACC, and NaCl treatments. The malondialdehyde (MDA) content of transgenic tobacco was significantly lower than that of wild-type tobacco, showing a strong resistance to drought. The ectopic expression of SfPR1a gene improved plant growth under salt stress. After infection of P. syringae, transgenic tobacco leaves showed serious necrosis reaction, but the overall resistance phenotype of the plants was significantly better than that of WT. Subcellular localization analysis showed SfPR1a was localized in the plant cell apoplastic space. The above results indicated that the SfPR1a gene is involved in plant resistance to abiotic and biotic stresses.

Key words: pathogenesis-related protein gene SfPR1a, expression pattern, transgenic tobacco, resistance function, subcellular localization

图1

费尔干猪毛菜SfPR1a蛋白与其他PR1蛋白家族成员的比较 不同物种PR1蛋白GenBank登录号: 水稻OsPR1 (AJR16763.1)、大豆GmPR1 (XP003545775.1)、青稞HvPR1 (CAA79703.1)、橡胶树HbPR1 (ALS87256.1)、费尔干猪毛菜SfPR1a (AFR90191.1)。"

图2

SfPR1a基因在费尔干猪毛菜不同组织部位以及不同处理下的表达分析 SfPR1a基因在茎叶和根中(A)、ABA (B)、ACC (C)、JAs (D)以及NaCl (E)处理下的相对表达量。每组实验设3个生物学重复, 不同字母表示存在显著差异(P < 0.05)。"

图3

SfPR1a基因在转基因烟草中的表达分析 标以不同小写字母的柱值差异显著(P < 0.05)。"

图4

转SfPR1a基因烟草在干旱胁迫下的抗性 A: 干旱胁迫处理2周后的烟草生长表型; B: 干旱胁迫处理2周后的烟草MDA含量变化; C: 干旱胁迫处理4周复水1周后的烟草生长表型; D: 干旱胁迫处理4周复水1周后的烟草存活率统计。图中不同小写字母间表示存在显著性差异(P < 0.05)。"

图5

转SfPR1a基因烟草在盐胁迫下的抗性 200 mmol L-1 NaCl胁迫下的烟草萌发生长表型(A)及相对生长量(B); 250 mmol L-1 NaCl胁迫下的烟草成苗抗盐表型(C)。图中标以不同小写字母的柱值差异显著(P < 0.05)。"

图6

转SfPR1a基因烟草对叶斑病的抗性 A: 接菌10 d后烟草叶片菌斑面积; B: 接菌45 d后的烟草叶片; C: 接菌45 d后烟草叶片菌斑面积; D: 接菌60 d后烟草植株的生长表型。图中标以不同小写字母的柱值差异显著(P < 0.05)。"

图7

SfPR1a的亚细胞定位 A: 空载对照mGFP的荧光图; B: 融合蛋白SfPR1a-mGFP的荧光图; C: 明场下的图B; D: 荧光图B与明场图C的叠加效果图。"

[1] Balbi V, Devoto A . Jasmonate signalling network in Arabidopsis thaliana: Crucial regulatory nodes and new physiological scenarios. New Phytol, 2008,177:301-318.
[2] Mahabub A M, Nahar K, Hasanuzzaman M, Fujita M . Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different brassica species. Plant Biotechnol Rep, 2014,8:279-293.
[3] Wasternack C . Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot, 2007,100:681-697.
[4] Wang L C, Li H, Ecker J R. Wang K L C, Li H, Ecker J R . Ethylene biosynthesis and signaling networks. Plant Cell, 2002,14:S131-S151.
[5] Guo H, Ecker J R . The ethylene signaling pathway: new insights. Curr Opin Plant Biol, 2004,7:40-49.
[6] Ali S, Mir Z A, Bhat J A, Tyagi A, Chandrashekar N, Yadav P, Rawat S, Sultana M, Grover A . Isolation and characterization of systemic acquired resistance marker gene PR1 and its promoter from Brassica juncea. 3Biotech, 2018,8:10-24.
[7] Mejía-Teniente L, Durán-Flores F de D, Chapa-Oliver A M, Torres-Pacheco I, Cruz-Hernández A, González-Chavira M M, Ocampo-Velázquez R V, Guevara-González R G . Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Int J Mol Sci, 2013,14:10178-10196.
[8] Bantel Y, Darwiche R, Rupp S, Schneiter R, Sohn K . Localization and functional characterization of the pathogenesis-related proteins Rbe1p and Rbt4p in Candida albicans. PLoS One, 2018,13:1371-1385.
[9] Abraham A, Chandler D E . Tracing the evolutionary history of the CAP superfamily of proteins using amino acid sequence homology and conservation of splice sites. J Mol Evol, 2017,85:137-157.
[10] Ohshima M, Matsuoka M, Yamamoto N, Tanaka Y, Kano-Murakami Y, Ozeki Y, Kato A, Harada N, Ohashi Y . Nucleotide sequence of the PR-1 gene of Nicotiana tabacum. FEBS Lett, 1987,225:246-246.
[11] Tornero P, José G, Conejero V, Pablo V . Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Mol Plant-Microbe Interact, 1997,10:624-634.
[12] Klaus M, Aaron L, Thomas E, Allen M, Jürg S, Kay A L, Jeffery L D, Robert A D . The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature, 2001,26:403-410.
[13] Li Z T, Dhekney S A, Gray D J . PR-1 gene family of grapevine: a uniquely duplicated PR-1 gene from a vitisinter specific hybrid confers high level resistance to bacterial disease in transgenic tobacco. Plant Cell Rep, 2011,30:1-11.
[14] Ichiro M, Takayoshi I, Shigemi S, Yuki Y, Hiroyuki K, Sakino H, Yasunobu O, Yuko O . Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol Genet Genomics, 2008,279:415-427.
[15] Maria T R G, Carlos E S L, Juana M J V, Cesar V F B, Ernesto O, Lourival D P . Transcriptomic and proteomic analyses reveal the diversity of venom components from the vaejovid scorpion Serradigitus gertschi. Toxins, 2018,10:359-384.
[16] Jung H W, Tschaplinski T J, Wang L, Jane G, Jean T G . Priming in systemic plant immunity. Science, 2009,324:89-91.
[17] Fumihiko S, Hisashi K, Yasuyoshi S, Nobuo K, Yasuyuki Y . Synthesis and secretion of tobacco neutral PR-5 protein by transgenic tobacco and yeast. Biochem Biophys Res Commun, 1995,211:909-913.
[18] Leendert C V L, Martijn R, Corné P . Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol, 2006,44:135-162.
[19] Sayaka I, Ei’ichi I, Keiichi W, Yukio N . Transcriptome analysis reveals key roles of AT-LBR2 in LPS-induced defense responses in plants. BMC Genomics, 2017,18:995-1008.
[20] Antoniw J F, Ritter C E, Pierpoint W S, Vanloon L C . Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J General Virol, 1980,47:79-87.
[21] Lu S, Edwards M . Molecular characterization and functional analysis of PR-1-like proteins identified from the wheat head blight fungus fusarium graminearum. Phytopathology, 2017,108:510-520.
[22] 王艳, 陈西, 周连洁, 杨中敏 . 费尔干猪毛菜病程相关蛋白基因(SfPR-1)的克隆及在盐胁迫下的表达分析. 植物科学学报, 2013,31:164-170.
Wang Y, Chen X, Zhou L J, Yang Z M . Cloning of pathogen-related protein gene (SfPR-1) from Salsola ferganica and its expression analysis under salt stress. Plant Sci J, 2013,31:164-170(in Chinese with English abstract).
[23] 马立功, 张匀华, 孟庆林, 石凤梅, 刘佳, 李易初, 王志英 . 向日葵病程相关蛋白HaPR1基因的克隆与功能. 作物学报, 2015,41:1819-1827.
Ma L G, Zhang Y H, Meng Q L, Shi F M, Liu J, Li Y C, Wang Z Y . Cloning and function analysis of pathogenesis related protein gene HaPR1 from sunflower(Helianthus annuus). Acta Agron Sin, 2015,41:1819-1827 (in Chinese with English abstract).
[24] 高海波, 曾幼玲, 张富春 . 费尔干猪毛菜愈伤组织的诱导、分化及植株再生体系的建立. 武汉植物学研究, 2008,26:634-638.
Gao H B, Zeng Y L, Zhang F C . Callus induction differentiation and establishment of plantlet regeneration system of Salsola ferganica. J Wuhan Bot Res, 2008,26:634-638 (in Chinese with English abstract).
[25] 王艳, 陈西, 周莲洁, 杨中敏 . 费尔干猪毛菜病程相关蛋白基因SfPR-1的表达规律和植物表达载体构建. 生物技术通报, 2014, ( 1):116-124.
Wang Y, Chen X, Zhou L J, Yang Z M . Expression profiles of pathogen-related protein gene (SfPR-1) from Salsola ferganica and construction of plant expression vectors. Biotechnol Bull, 2014, ( 1):117-124 (in Chinese with English abstract).
[26] Matsuo K, Fukuzawa N, Matsumura T . A simple agroinfiltration method for transient gene expression in plant leaf discs. J Biosci Bioeng, 2016,122:351-356.
[27] 王燃, 许亚龙, 李泽锋, 卢鹏, 孟利军, 曹培健 . 基于芯片数据的烟草qRT-PCR内参基因鉴定与验证. 烟草科技, 2017,50(11):1-8.
Wang R, Xu Y L, Li Z F, Lu P, Meng L J, Cao P J . Identification and validation of tobacco reference genes for qRT-PCR based on microarray data. Tob Sci Technol, 2017,50(11):1-8 (in Chinese with English abstract).
[28] Hodges D M, DeLong J M, Forney C F, Prange R K . Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999,207:604-611.
[29] Gitelson A A, Merzlyak M N . Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sensing, 1997,18:2691-2697.
[30] Wang J, Lan X X, Jiang S X, Ma Y L, Zhang S Y, Liu Y, Li X R, Lan H Y . CaMKK1 from Chenopodium album positively regulates salt and drought tolerance in transgenic tobacco. Plant Cell Tissue Organ Cult, 2017,130:1-17.
[31] Lee O R, Kim Y J, Balusamy S R D, Khorolragchaa A, Sathiyaraj G, Kim M K, Yang D C . Expression of the ginseng PgPR10-1 in Arabidopsis confers resistance against fungal and bacterial infection. Gene, 2012,506:85-92.
[32] 高建昌, 郭广君, 国艳梅, 王孝宣, 杜永臣 . 平台扫描仪结合ImageJ软件测定番茄叶面积. 中国蔬菜, 2011,2(1):73-77.
Gao J C, Guo G J, Guo Y M, Wang X W, Du Y C . Measuring plant leaf area by scanner and ImageJ software. China Vegetables, 2011,2(1):73-77 (in Chinese with English abstract).
[33] Indra K V, Vimla V . Transformation of wheat via particle bombardment. Methods Mol Biol, 1999: 111:349-358.
[34] Linthorst H J, van Loon L C, van Rossum C M, Mayer A, Bol J F, van Roekel J S, Meulenhoff E J, Cornelissen B J . Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant Microbe Interact, 1990,3:252-258.
[35] Ganesh K A, Nam S J, Randeep R . A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun, 2000,274:157-165.
[36] Ganesh K A, Randeep R, Nam S J . Rice (Oryza sativa L.) OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochem Biophys Res Commun, 2000,278:290-298.
[37] Ganesh K A, Randeep R, Nam-Soo J, Vishwanath P A . Signalling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: a model illustrating components participating during defence/stress response. Plant Physiol Biochem, 2001,39:1095-1103.
[38] Wang L, Guo Z H, Zhang Y B, Wang Y J, Wang L, Yang G, Li W M, Wang R Y, Xie Z K . Characterization of LhSorTGA2, a novel TGA2-like protein that interacts with LhSorNPR1 in oriental hybrid lily sorbonne. Bot Studies, 2017,58:46-57.
[39] Gao L, Wang S, Li X Y, Wei X J, Zhang Y J, Wang H Y, Liu D Q . Expression and functional analysis of a pathogenesis-related protein 1 gene, TcLr19PR1, involved in wheat resistance against leaf rust fungus. Plant Mol Biol Rep, 2015,33:797-805.
[40] Stintzi A, Heitz T, Kauffmann S, Legrand M, Fritig B . Identification of a basic pathogenesis-related, thaumatin-like protein of virus-infected tobacco as osmotin. Physiol Mol Plant Pathol, 1991,38:137-146.
[41] Liu W X, Zhang F C, Zhang W Z, Song L F, Wu W H, Chen Y F . Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Mol Plant, 2013,6:1487-1502.
[42] Alexander D, Goodman R M, Gut R M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahlgoy P, Luntz T, Ward E . Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci USA, 1993,90:7327-7331.
[43] Lu S, Faris J D, Sherwood R, Edwards M C . Dimerization and protease resistance: new insight into the function of PR-1. J Plant Physiol, 2013,170:105-110.
[44] Cao H, Glazebrook J, Clarke J D, Volko S, Dong X . The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997,88:57-63.
[45] Lincoln J E, Sanchez J P, Zumstein K, Gilchrist D G . Plant and animal PR1 family members inhibit programmed cell death and suppress bacterial pathogens in plant tissues. Mol Plant Pathol, 2018,19:2111-2123.
[46] Li Z, Liang W S, John P C . Effects of modifying alternative respiration on nitric oxide-induced virus resistance and PR1 protein accumulation. J General Virol, 2014,95:2075-2081.
[47] Tosarini T R, Ramos P Z, Profeta G S, Baroni R M, Massirer K B, Couñago R M, Mondego J M C . Cloning, expression and purification of kinase domains of cacao PR-1 receptor-like kinases. Protein Expr Purif, 2018,146:78-84.
[48] Pečenková T, Pleskot R, Žárský V . Subcellular localization of Arabidopsis pathogenesis-related 1(PR1) protein. Int J Mol Sci, 2017,18:825-838.
[1] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[2] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[3] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[4] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[5] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[6] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[7] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[8] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
[9] 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828.
[10] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
[11] 赵立娜,刘子会,段硕楠,张园园,李国良,郭秀林. 小麦热激转录因子基因TaHsfB2d的克隆和特性及其对耐热性的调控[J]. 作物学报, 2018, 44(01): 53-62.
[12] 赵立娜.段硕楠.张华宁.郭秀林.李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(07): 1021-1029.
[13] 董萌,高友菲,韩天富,东方阳,蒋炳军. 大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作[J]. 作物学报, 2016, 42(10): 1419-1428.
[14] 王婷婷,丛亚辉,柳聚阁,王宁帅,琴李艳,盖钧镒. 大豆中一个WRKY28-like基因的克隆与功能分析[J]. 作物学报, 2016, 42(04): 469-481.
[15] 贺晓岚,王建伟,李文旭,陈真真,赵继新,武军,王中华,陈新宏. 大赖草6-SFT基因的克隆及其转基因烟草抗旱和抗寒性分析[J]. 作物学报, 2016, 42(03): 389-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!