欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (4): 714-727.doi: 10.3724/SP.J.1006.2021.01048

• 耕作栽培·生理生化 • 上一篇    下一篇

山西省小麦苗期根系性状及抗旱特性分析

赵佳佳1,2(), 乔玲2, 武棒棒2, 葛川1, 乔麟轶1, 张树伟1, 闫素仙2, 郑兴卫2,*(), 郑军2,*()   

  1. 1山西农业大学有机旱作农业研究院 / 有机旱作山西省重点实验室, 山西太原 030006
    2山西农业大学小麦研究所, 山西临汾 041000
  • 收稿日期:2020-06-08 接受日期:2020-09-13 出版日期:2021-04-12 网络出版日期:2020-09-25
  • 通讯作者: 郑兴卫,郑军
  • 作者简介:赵佳佳, E-mail: jjzh1990@163.com
  • 基金资助:
    有机旱作山西省重点实验室开放基金项目(201805D111015-2);山西省自然科学基金项目(201901D211567);山西省农业科学院科技创新项目(YCX2018413);山西省重点研发计划项目(201803D421021)

Seedling root characteristics and drought resistance of wheat in Shanxi province

ZHAO Jia-Jia1,2(), QIAO Ling2, WU Bang-Bang2, GE Chuan1, QIAO Lin-Yi1, ZHANG Shu-Wei1, YAN Su-Xian2, ZHENG Xing-Wei2,*(), ZHENG Jun2,*()   

  1. 1Academy of Organic Dry Farming Agricultural Research, Shanxi Agriculture University, the Key Laboratory of Organic Dry Farming of Shanxi Province, Taiyuan 030006, Shanxi, China
    2Institute of Wheat Research, Shanxi Agriculture University, Linfen 041000, Shanxi, China
  • Received:2020-06-08 Accepted:2020-09-13 Published:2021-04-12 Published online:2020-09-25
  • Contact: ZHENG Xing-Wei,ZHENG Jun
  • Supported by:
    Key Laboratory of Organic Dry Farming of Shanxi Province(201805D111015-2);Natural Science Foundation of Shanxi Province(201901D211567);Agricultural Science and Technology Project(YCX2018413);Shanxi Province Key Research and Development Program(201803D421021)

摘要:

小麦苗期根系形态是成株期根系分布的基础, 与抗逆和产量密切相关, 全面认识苗期根系及抗旱特性, 对于抗旱优异种质的利用和早期筛选具有重要意义。采用239份山西省小麦品种(系)在土培条件下, 研究了苗期根系性状及对水分胁迫的响应。结果表明, 正常生长下山西小麦苗期根系性状多样性丰富, 地方种变异最大; 不同年代品种中, 除最大根长随年代略下降外, 其他性状均呈先升后降的趋势; 不同根系性状对水分胁迫响应存在差异, 总根长对水分最敏感, 其次为根表面积、根体积和根生物量, 最大根长和平均根数不敏感。苗期根系综合抗旱能力随年代呈先降后升的趋势, 地方种和20世纪70年代品种多为中抗, 80和90年代的品种抗旱性较低, 2000年以后审定品种的抗性较高, 其中旱地品种抗性最好。苗期根系抗旱特性与产量性状相关分析发现, 最大根长、总根长、根体积和根生物量与雨养条件下的千粒重和产量显著正相关, 最大根长和根生物量与成株期抗旱性也显著正相关。因此苗期最大根长和根生物量可作为半干旱地区旱地育种过程中抗旱性和产量的早期筛选指标。

关键词: 山西小麦, 苗期根系, 抗旱特性, 演变趋势

Abstract:

Wheat root morphology at the seedling stage is the basis of root distribution at the adult stage. It is closely related to stress resistance and yield. A comprehensive understanding of the root system characteristics at seedling stage and drought resistance is of great significance for the excellent germplasm utilization and early screening of drought resistance. Using 239 wheat varieties (lines) from Shanxi province, the root traits at seedling stage and their response to water stress were evaluated. The results showed that under normal growth, Shanxi wheat had a great variation in root traits at seedling stage, with the greatest variation in landraces. The maximum root length (MRL) tended to decrease slightly with the years, while other root traits were first increased and then decreased. There were differences among the root traits in response to water stress. The total root length (TRL) is the most sensitive to water, followed by root surface area (RSA), root volume (RV) and root biomass. The maximum root length (MRL) and the average number of roots (RN) were insensitive. The drought resistance of seedling roots showed a trend of decreasing first and then increasing with the years. Landraces and varieties released from 1970 to 1979 had moderately resistance to water stress, varieties released from 1980 to 1999 had lower drought resistance, and varieties released after 2000 had the better resistance, of which the dryland varieties were the best resistance. Correlation analysis of the seedling root characteristics and yield related traits suggested that the maximum root length, total root length, root volume and root biomass were significantly positively correlated with 1000-kernel weight and yield under rain-fed conditions, and the maximum root length and root biomass were also significantly positively correlated with adult plant drought resistance. The present study suggests that the maximum root length and root biomass at the seedling stage can be used as early generation selection parameters for drought resistance and yield in dryland breeding in semi-arid areas.

Key words: Shanxi wheat, seedling root system, drought resistance characteristics, evolution trend.

附表1

山西小麦品种(系)及其审定年限"

编号
No.
品种
Variety
年份
Year
类型
Type
编号
No.
品种
Variety
年份
Year
类型
Type
1 晋麦1号 Jinmai 1 1973 旱DC 121 晋麦88 Jinmai 88 2009 旱DC
2 晋麦5号 Jinmai 5 1973 旱DC 122 山农129 Shannong 129 2009 水IC
3 晋春3号 Jinchun 3 1974 旱DC 123 太13606 Tai 13606 2009 水IC
4 晋麦11 Jinmai 11 1980 水IC 124 长麦5973 Changmai 5973 2009 水IC
5 晋麦12 Jinmai 12 1980 水IC 125 长5222 Chang 5222 2009 水IC
6 晋麦13 Jinmai 13 1980 旱DC 126 晋麦88 Jinmai 88 2009 旱DC
7 晋麦16 Jinmai 16 1982 旱DC 127 NC206 2009 水IC
8 晋麦17 Jinmai 17 1982 旱DC 128 临Y7287 Lin Y7287 2009 水IC
9 晋麦18 Jinmai 18 1983 水IC 129 晋春16 Jinchun 16 2009 水IC
10 晋麦19 Jinmai 19 1983 水IC 130 长麦6135 Changmai 6135 2010 水IC
11 晋麦20 Jinmai 20 1984 水IC 131 临远8号 Linyuan 8 2010 水IC
12 晋麦21 Jinmai 21 1985 水IC 132 长麦251 Changmai 251 2011 水IC
13 晋麦22 Jinmai 22 1985 旱DC 133 长8744 Chang 8744 2011 旱DC
14 晋麦23 Jinmai 23 1985 水IC 134 晋麦90 Jinmai 90 2011 旱DC
15 晋麦24 Jinmai 24 1987 水IC 135 晋麦91 Jinmai 91 2011 旱DC
16 晋麦25 Jinmai 25 1988 水IC 136 运旱805 Yunhan 805 2011 旱DC
17 晋麦9号 Jinmai 9 1988 水IC 137 尧麦16 Yaomai 16 2011 水IC
18 晋麦27 Jinmai 27 1989 旱DC 138 舜麦1718 Shunmai 1718 2011 水IC
19 晋麦28 Jinmai 28 1989 旱DC 139 晋麦92 Jinmai 92 2013 旱DC
20 晋麦29 Jinmai 29 1989 旱DC 140 晋太182 Jintai 182 2013 水IC
21 晋麦30 Jinmai 30 1990 水IC 141 长4853 Chang 4853 2013 旱DC
22 晋麦31 Jinmai 31 1990 水IC 142 晋麦94 Jinmai 94 2014 水IC
23 晋麦32 Jinmai 32 1990 水IC 143 晋麦95 Jinmai 95 2014 水IC
24 晋麦33 Jinmai 33 1990 旱DC 144 晋麦96 Jinmai 96 2014 水IC
25 晋麦35 Jinmai 35 1990 水IC 145 晋太102 Jintai 102 2014 水IC
26 晋麦36 Jinmai 36 1991 旱DC 146 晋麦97 Jinmai 97 2014 旱DC
27 晋麦37 Jinmai 37 1991 水IC 147 晋麦98 Jinmai 98 2014 旱DC
28 晋麦38 Jinmai 38 1991 旱DC 148 太春3473 Taichun 3473 2014 水IC
29 晋麦39 Jinmai 39 1991 旱DC 149 晋麦99 Jinmai 99 2015 旱DC
30 晋麦40 Jinmai 40 1991 旱DC 150 良星67 Liangxing 67 2016 水IC
31 晋麦41 Jinmai 41 1992 水IC 151 运旱137 Yunhan 137 2016 旱DC
32 晋麦42 Jinmai 42 1992 旱DC 152 太113 Tai 113 2016 水IC
33 晋麦44 Jinmai 44 1992 旱DC 153 晋作80 Jinzuo 80 2016 水IC
34 晋麦43 Jinmai 43 1992 旱DC 154 晋太114 Jintai 114 2016 水IC
35 晋麦45 Jinmai 45 1993 水IC 155 长6794 Chang 6794 2016 水IC
36 晋麦46 Jinmai 46 1994 旱DC 156 晋太1310 Jintai 1310 2016 旱DC
37 晋麦47 Jinmai 47 1995 旱DC 157 长6990 Chang 6990 2016 旱DC
38 晋麦48 Jinmai 48 1995 水IC 158 中麦247 Zhongmai 247 2016 水IC
39 晋麦49 Jinmai 49 1996 水IC 159 润麦2号 Runmai 2 2016 旱DC
40 晋麦50 Jinmai 50 1996 旱DC 160 长6197 Chang 6197 2017 旱DC
41 晋麦51 Jinmai 51 1996 旱DC 161 长7080 Chang 7080 2017 旱DC
42 晋麦52 Jinmai 52 1996 水IC 162 临Y8161 Lin Y8161 2017 旱DC
43 晋麦53 Jinmai 53 1996 水、旱IC, DC 163 晋太141 Jintai 141 2017 旱DC
44 晋春13 Jinchun 13 1996 水IC 164 晋太146 Jintai 146 2017 水IC
编号
No.
品种
Variety
年份
Year
类型
Type
编号
No.
品种
Variety
年份
Year
类型
Type
45 晋麦54 Jinmai 54 1997 旱DC 165 太412 Tai 412 2017 水IC
46 黑小麦76 Heixiaomai 76 1997 水IC 166 石农086 Shinong 086 2017 水IC
47 晋麦56 Jinmai 56 1998 旱DC 167 翔麦23 Xiangmai 23 2017 水IC
48 晋麦57 Jinmai 57 1998 旱DC 168 运旱139-2 Yunhan 139-2 2017 旱DC
49 晋麦58 Jinmai 58 1998 水IC 169 翔麦8156 Xiangmai 8156 2017 旱DC
50 晋麦59 Jinmai 59 1998 旱DC 170 晋麦104 Jinmai 104 2017 旱DC
51 晋麦60 Jinmai 60 1999 旱DC 171 晋春17 Jinchun 17 2017 水IC
52 晋麦61 Jinmai 61 1999 旱DC 172 鲁科298 Luke 298 2018 水IC
53 晋麦62 Jinmai 62 1999 水IC 173 太1305 Tai 1305 2018 旱DC
54 晋麦63 Jinmai 63 1999 旱DC 174 运14观74 Yun 14 guan 74 2018 水IC
55 晋春14 Jinchun 14 1999 水IC 175 晋麦101 Jinmai 101 2018 旱DC
56 晋麦65 Jinmai 65 2000 水IC 176 晋麦102 Jinmai 102 2018 旱DC
57 晋麦66 Jinmai 66 2000 水IC 177 运旱1512 Yunhan 1512 2018 旱DC
58 晋麦67 Jinmai 67 2000 水IC 178 临旱9号 Linhan 9 2018 旱DC
59 晋麦68 Jinmai 68 2000 旱DC 179 沃麦323 Womai 323 2018 旱DC
60 晋麦70 Jinmai 70 2001 旱DC 180 金麦919 Jinmai 9191 2018 旱DC
61 晋麦71 Jinmai 71 2001 水IC 181 长6789 Chang 6789 2018 水IC
62 晋麦72 Jinmai 72 2001 水IC 182 运旱1411-2 Yunhan 1411-2 2018 旱DC
63 晋麦73 Jinmai 73 2002 旱DC 183 太麦101 Taimai 101 2018 水IC
64 晋麦74 Jinmai 74 2002 水IC 184 晋太1510 Jintai 1510 2018 旱DC
65 晋麦75 Jinmai 75 2002 水IC 185 长麦3897 Changmai 3897 2018 旱DC
66 临汾615 Linfen 615 2002 水IC 186 运黑14207 Yunhei 14207 2018 水IC
67 运引1号 Yunyin 1 2002 水IC 187 运黑161 Yunhei 161 2018 水IC
68 晋农207 Jinnong 207 2002 水IC 188 运糯32 Yunnuo 32 2018 水IC
69 中旱110 Zhonghan 110 2002 旱DC 189 临7006 Lin 7006 2018 水IC
70 长6878 Chang 6878 2002 旱DC 190 临Y8012 Lin Y8012 2018 水IC
71 晋太170 Jintai 170 2002 旱DC 191 中麦110 Zhongmai 110 2019 水IC
72 长治5608 Changzhi 5608 2002 旱DC 192 龙麦1号 Longmai 1 2019 水IC
73 临优145 Linyou 145 2003 水IC 193 晋麦105 Jinmai 105 2019 旱DC
74 临汾138 Linfen 138 2003 水IC 194 ZM148 2019 水IC
75 长6154 Chang 6154 2003 旱DC 195 长5638 Chang 5638 2019 水IC
76 河东TX-006
Hedong TX-006
2003 旱DC 196 晋太1508 Jintai 1508 2019 水IC
77 晋太65 Jintai 65 2003 水IC 197 太麦103 Taimai 103 2019 水IC
78 运旱21-30 Yunhan 21-30 2003 旱DC 198 临研151 Linyan 151 2019 水IC
79 临丰3号 Linfeng 3 2004 旱DC 199 气死风 Qisifeng 地方种 Landrace
80 临远3158 Linyuan 3158 2004 水IC 200 红和尚 Hongheshang 地方种 Landrace
81 临抗11 Linkang 11 2004 旱DC 201 西安麦 Xianmai 地方种 Landrace
82 泽优2号 Zeyou 2 2004 旱DC 202 笨麦 Benmai 地方种 Landrace
83 冬黑1号 Donghei 1 2004 水IC 203 白壳红 Baikehong 地方种 Landrace
84 运黑28 Yunhei 28 2004 水IC 204 红水麦 Hongshuimai 地方种 Landrace
85 冬黑10号 Donghei 10 2004 旱DC 205 金裹银 Jinguoyin 地方种 Landrace
86 运麦2064 Yunmai 2064 2004 水IC 206 游白兰 Youbailan 地方种 Landrace
87 吕旱1608 Lyuhan 1608 2004 旱DC 207 白线麦 Baixianmai 地方种 Landrace
88 晋春15 Jinchun 15 2004 水IC 208 白梗茬 Baigengcha 地方种Landrace
编号
No.
品种
Variety
年份
Year
类型
Type
编号
No.
品种
Variety
年份
Year
类型
Type
89 临优2018 Linyou 2018 2005 水IC 209 新城雪里梅Xinchengxuelimei 地方种 Landrace
90 临优2069 Linyou 2069 2005 水IC 210 白山麦 Baishanmai 地方种 Landrace
91 运旱2335 Yunhan 2335 2005 旱DC 211 白火麦 Baihuomai 地方种 Landrace
92 长6359 Chang 6359 2005 旱DC 212 白三月黄 Baisanyuehuang 地方种 Landrace
93 长麦5079 Changmai 5079 2005 旱DC 213 大白麦 Dabaimai 地方种 Landrace
94 长6452 Chang 6452 2005 水IC 214 小红皮 Xiaohongpi 地方种 Landrace
95 长4640 Chang 4640 2005 旱DC 215 牛趾甲(离石) Niuzhijia (Lishi) 地方种 Landrace
96 汾黑麦1831 Fenheimai 1831 2005 旱DC 216 红粒麦 Honglimai 地方种 Landrace
97 晋麦78 Jinmai 78 2006 旱DC 217 绛州红 Jiangzhouhong 地方种 Landrace
98 晋麦79 Jinmai 79 2006 旱DC 218 假红麦 Jiahongmai 地方种 Landrace
99 晋麦80 Jinmai 80 2006 旱DC 219 牛趾甲(中阳) Niuzhijia (Zhongyang) 地方种 Landrace
100 晋麦81 Jinmai 81 2006 旱DC 220 四月黄 Siyuehuang 地方种 Landrace
101 汾4846 Fen 4846 2006 水IC 221 三月黄 Sanyuehuang 地方种 Landrace
102 汾4439 Fen 4439 2006 水IC 222 白芒糙 Baimangcao 地方种Landrace
103 临旱6号 Linhan 6 2006 旱DC 223 有芒大红茎 Youmangdahongjing 地方种 Landrace
104 运麦218 Yunmai 218 2006 水IC 224 竹秆青 Zhuganqing 地方种 Landrace
105 晋麦82 Jinmai 82 2007 水IC 225 红秃麦(屯留) Hongtumai (Tunliu) 地方种 Landrace
106 临汾8050 Linfen 8050 2007 水IC 226 白秃麦(屯留) Baitumai (Tunliu) 地方种 Landrace
107 晋麦83 Jinmai 83 2007 水IC 227 白秃麦(吉县) Baitumai (Jixian) 地方种 Landrace
108 临汾6510 Linfen 6510 2007 水IC 228 红秃麦(吉县) Hongtumai (Jixian) 地方种 Landrace
109 运旱20410 Yunmai 20410 2007 旱DC 229 红蚰麦 Hongyoumai 地方种 Landrace
110 长麦6686 Changmai 6686 2007 水IC 230 红皮冬麦 Hongpidongmai 地方种 Landrace
111 长7016 Chang 7016 2007 旱DC 231 白山疙瘩 Baishangeda 地方种 Landrace
112 中麦175 Zhongmai 175 2007 水IC 232 红叶蚰 Hongyeyou 地方种 Landrace
113 晋麦84 Jinmai 84 2008 水IC 233 玉兰麦 Yulanmai 地方种 Landrace
114 晋麦85 Jinmai 85 2008 旱DC 234 紫麦 Zimai 地方种 Landrace
115 晋太9923 Jintai 9923 2008 水IC 235 大同小麦 Datongxiaomai 地方种 Landrace
116 晋麦86 Jinmai 86 2008 水IC 236 齐穗麦 Qisuimai 地方种 Landrace
117 太5902 Tai 5902 2008 水IC 237 大红麦 Dahongmai 地方种 Landrace
118 长麦6135 Changmai 6135 2008 旱DC 238 火烧头 Huoshaotou 地方种 Landrace
119 晋麦87 Jinmai 87 2009 旱DC 239 定兴寨小麦 Dingxingzhaixiaomai 地方种 Landrace
120 运旱719 Yunhan 719 2009 旱DC

图1

小麦生育期的月降雨量"

图2

山西小麦苗期根部性状表型 A: 正常条件下小麦苗期根系多样性。1: 晋春16; 2: 玉兰麦; 3: 晋麦79; 4: 临优145; 5: 晋麦73; 6: 晋麦86。B: 正常(CK)和胁迫(PEG)处理下苗期根系表型, YH 21-30: 运旱21-30; CM 6973: 长麦6973。"

表1

正常水分条件下山西苗期小麦根部性状分析"

性状
Trait
地方种Landrace 旱地品种Dryland cultivar 水地品种 Irrigated cultivar
变幅
Range
均值
Mean
变异系数
CV (%)
变幅
Range
均值
Mean
变异系数
CV (%)
变幅
Range
均值
Mean
变异系数
CV (%)
最大根长MRL (cm) 13.42-25.10 17.99±0.40 14.10 11.50-22.33 16.95±0.24 13.77 11.75-22.77 17.27±0.24 14.21
总长度TRL (cm) 48.85-194.20 114.75±6.31 35.24 45.45-219.74 123.66±3.56 28.03 58.79-250.98 135.79±3.81 28.45
表面积RSA (cm2) 5.82-20.97 11.67±0.51 27.79 6.59-23.35 13.79±0.34 23.95 7.76-21.46 14.73±0.29 19.92
体积RV (cm3) 0.06-0.27 0.125±0.006 29.14 0.08-0.31 0.16±0.005 27.07 0.09-0.29 0.17±0.004 21.01
平均根数RN 3.00-5.67 4.71±0.09 12.89 3.00-7.33 5.35±0.07 13.01 3.33-7.00 5.26±0.06 11.38
地上鲜重SFW (g) 0.07-0.16 0.11±0.003 17.86 0.09-0.19 0.136±0.002 16.68 0.09-0.20 0.135±0.002 14.93
地上干重SDW (g) 0.01-0.02 0.013±0.0004 20.31 0.01-0.03 0.018±0.0003 17.92 0.01-0.02 0.018±0.0003 14.75
根鲜重RFW (g) 0.06-0.14 0.099±0.003 19.94 0.08-0.20 0.124±0.003 21.30 0.08-0.19 0.132±0.0025 19.04
根干重RDW (g) 0.005-0.012 0.008±0.0002 18.89 0.01-0.02 0.011±0.0003 22.11 0.01-0.02 0.011±0.0002 17.28
鲜根冠比FRSR 0.56-1.24 0.90±0.023 16.36 0.48-1.37 0.92±0.018 19.24 0.54-1.45 0.99±0.017 17.41
干根冠比DRSR 0.39-0.92 0.64±0.017 16.66 0.37-0.92 0.62±0.012 18.82 0.37-1.01 0.65±0.011 17.76
地上含水量SWC 0.86-0.90 0.88±0.001 0.98 0.84-0.90 0.87±0.001 1.29 0.84-0.89 0.87±0.001 1.17
地下含水量RWC 0.9-0.93 0.92±0.001 0.89 0.89-0.94 0.91±0.001 1.14 0.89-0.93 0.91±0.001 0.93

表2

PEG胁迫处理下根部性状分析"

图3

山西小麦苗期根系性状的抗旱系数"

图4

山西小麦苗期根部性状特征演化 缩略同表1。."

图5

山西小麦苗期根系抗旱性鉴定"

图6

干旱胁迫下小麦幼苗渗透势 A: 叶片渗透势; B: 根系渗透势。JM88: 晋麦88; JM83: 晋麦83; JM82: 晋麦82; YH 21-30: 运旱21-30; JM90: 晋麦90; JC16: 晋春16; JC14: 晋春14; YH 20410: 运旱20410; CM 5973: 长麦5973; Yulanmai: 玉兰麦。"

表3

苗期根部性状抗旱性与产量相关性分析"

DTCi 成株期
D
D-value at
adult stage
雨养Rain-fed 灌溉Well-watered
株高
PH
小穗数
SNPP
穗粒数
GNPS
有效
分蘖
EPT
千粒重
TKW
单株
产量
YPP
株高
PH
小穗数
SNPP
穗粒数
GNPS
有效
分蘖
EPT
千粒重
TKW
单株产量
YPP
MRL 0.193* 0.025 -0.043 -0.043 0.186 0.186* 0.189* -0.084 -0.111 -0.163* 0.079 0.111 -0.093
TRL 0.195 -0.059 0.011 -0.046 0.098 0.181* 0.167* -0.089 -0.024 -0.119 0.049 0.170* -0.016
RSA 0.114 -0.031 0.071 -0.004 0.112 0.225** 0.116 -0.034 0.029 -0.111 0.043 0.206** 0.011
RV 0.086 -0.004 0.120 0.068 0.112 0.201* 0.190* 0.038 0.097 -0.052 0.024 0.190* 0.056
RN -0.175* -0.183* 0.131 0.140 -0.051 -0.075 0.064 -0.063 0.022 0.006 0.128 0.048 0.032
SFW 0.172* 0.009 0.076 -0.008 0.182 0.162* 0.078 -0.045 -0.008 -0.123 0.090 0.112 -0.043
SDW 0.207** 0.026 0.006 -0.008 0.236 0.229** 0.112 -0.032 -0.056 -0.124 0.071 0.141 -0.030
RFW 0.175* 0.004 0.059 0.059 0.189 0.239** 0.179* 0.012 -0.019 -0.117 0.089 0.164* -0.017
RDW 0.184* 0.020 0.108 0.019 0.154 0.346** 0.198* -0.004 0.019 -0.079 0.072 0.277** 0.082
FRSR 0.054 -0.007 -0.052 -0.016 -0.010 0.061 0.022 0.082 -0.022 -0.008 -0.019 -0.002 -0.011
DRSR -0.045 -0.039 0.147 -0.019 -0.136 0.114 0.045 0.049 0.108 -0.007 0.002 0.147 0.071
SWLR -0.050 0.004 0.187* 0.042 -0.009 -0.054 0.008 0.018 0.115 -0.045 0.061 0.014 -0.027
RWLR 0.131 -0.025 -0.025 0.012 0.093 -0.060 -0.017 -0.022 -0.058 -0.134 0.061 -0.160* -0.210**
[1] Manschadi A M, Christopher J, Devoil P, Hammer G L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol, 2006,33:823-837.
pmid: 32689293
[2] Berry P M, Sylvester-Bradly R, Berry S. Ideotype design for lodging-resistant wheat. Euphytica, 2007,154:165-179.
[3] Atkinson J A, Wingen L U, Griffiths M, Pound M P, Gaju O, Foulkes M J, Gouis J L, Griffiths S, Bennett M J, King J, Wells D M. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot, 2015,66:2283-2292.
[4] Veronica M R, Jorge B V, Luis L B, Rafael J L B. Monitoring wheat root development in a rainfed vertisol: tillage effect. Eur J Agron, 2010,33:182-187.
[5] Ibrahim S E, Schubert A, Pillen K, Léon J. QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat. Int J Agric Sci, 2012,2:619-629.
[6] Placido D F, Campbell M T, Folsom J J, Cui X, Kruger G R, Stephen B P, Walia H. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol, 2013,161:1806-1819.
pmid: 23426195
[7] Feng S W, Gu S B, Zhang H B, Wang D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res, 2017,214:131-141.
[8] Zobel R W, Wright S F. Primary and secondary root systems. In: Roots and Soil Management: Interactions between Roots and the Soil. ASA, CSSA, and SSSA, Madison, WI, 2005. pp 3-14.
[9] Cane M A, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalonga C, Roberto T. Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breed, 2014,34:1629-1645.
[10] Liu X L, Li R Z, Chang X P, Jing R L. Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica, 2013,189:51-66.
[11] Kabir M R, Liu G, Guan P F, Wang F, Khan A A, Ni Z F, Yao Y Y, Hu Z R, Xin M M, Peng H R, Sun Q X. Mapping QTLs associated with root traits using two different populations in wheat ( Triticum aestivum L.). Euphytica, 2015,206:175-190.
[12] Xie Q, Fernando K M C, Mayes S, Sparkes D L. Identifying seedling root architectural traits associated with yield and yield components in wheat. Ann Bot, 2017,119:1115-1129.
pmid: 28200109
[13] 苗青霞, 方燕, 陈应龙. 小麦根系特征对干旱胁迫的响应. 植物学报, 2019,54:652-661.
Miao Q X, Fang Y, Chen Y L. Studies in the responses of wheat root traits to drought stress. Chin Bull Bot, 2019,54:652-661 (in Chinese with English abstract).
[14] Sun Y Y, Zhang S Q, Chen W. Root traits of dryland winter wheat ( Triticum aestivum L.) from the 1940s to the 2010s in Shaanxi province, China. Sci Rep, 2020,10:5328.
[15] An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat ( Triticum aestivum L.). Plant Soil, 2006,284:73-84.
[16] Fan X L, Zhang W, Zhang N, Chen M, Zheng S S, Zhao C H, Han J, Liu J J, Zhang X L, Song L Q, Ji J, Liu X G, Ling H Q, Tong Y P, Cui F, Wang T, Li J M. Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat ( Triticum aestivum L.). Theor Appl Genet, 2018,131:2677-2698.
[17] Ayalew H, Ma X, Yan G. Screening wheat ( Triticum spp.) genotypes for root length under contrasting water regimes: potential sources of variability for drought resistance breeding. J Agron Crop Sci, 2015,201:189-194.
[18] Christopher J, Christopher M J, Jennings R, Jones S, Fletcher S, Borrell A, Manschadi A M, Jordan D, Mace E, Hammer G. QTL for root angle and number in a population developed from bread wheats ( Triticum aestivum) with contrasting adaptation to water- limited environments. Theor Appl Genet, 2013,126:1563-1574.
[19] Bai C H, Liang Y L, Hawkesford M J. Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot, 2013,64:1745-1753.
[20] Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H, Okumoto Y. Novel QTLs for growth angle of seminal roots in wheat ( Triticum aestivum L.). Plant Soil, 2012,354:395-405.
[21] Cao P, Ren Y Z, Zhang K P, Teng W, Zhao X Q, Dong Z Y, Liu X, Qin H J, Li Z S, Wang D W, Tong Y P. Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat. Mol Breed, 2014,33:975-985.
[22] 肖永贵, 路亚明, 闻伟锷, 陈新民, 夏先春, 王德森, 李思敏, 童依平, 何中虎. 小麦骨干亲本京411及衍生品种苗期根部性状的遗传. 中国农业科学, 2014,47:2916-2926.
Xiao Y G, Lu Y M, Wen W E, Chen X M, Xia X C, Wang D S, Li S M, Tong Y P, He Z H. Genetic contribution of seedling root traits among elite wheat parent Jing 411 to its derivatives. Sci Agric Sin, 2014,47:2916-2926 (in Chinese with English abstract).
[23] 景蕊莲, 昌小平, 朱志华, 胡荣海. 小麦幼苗根系形态与反复干旱存活率的关系. 西北植物学报, 2002,22:243-249.
Jing R L, Chang X P, Zhu Z H, Hu R H. Relationship between root morphology of wheat ( T. aestivum) and survival percentage under repeated drought condition. Acta Bot Boreali-Occident Sin, 2002,22:243-249 (in Chinese with English abstract).
[24] 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012,23:724-730.
Ma F J, Li D D, Cai J, Jiang D, Cao W X, Dai T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chin J Appl Ecol, 2012,23:724-730 (in Chinese with English abstract).
[25] Dhanda S S, Sethi G S, Behl R K. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci, 2004,190:6-12.
[26] Landjeva S, Neumann K, Lohwasser U, Börner A. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plant, 2008,52:259-266.
[27] 周晓果, 景蕊莲, 郝转芳, 昌小平, 张正斌. 小麦幼苗根系性状的QTL分析. 中国农业科学, 2005,38:1951-1957.
Zhou X G, Jing R L, Hao Z F, Chang X P, Zhang Z B. Mapping QTL for seedling root traits in common wheat. Sci Agric Sin, 2005,38:1951-1957 (in Chinese with English abstract).
[28] 胡雯媚, 王思宇, 樊高琼, 刘运军, 郑文, 王强生, 马宏亮. 西南麦区小麦品种苗期抗旱性鉴定及其指标筛选. 麦类作物学报, 2016,36:182-193.
Hu W M, Wang S Y, Fan G Q, Liu Y J, Zheng W, Wang Q S, Ma H L. Analysis on the drought resistance and screening of drought resistance appraisal indexes of wheat cultivars in seedling stage in southwest area. J Triticeae Crops, 2016,36:182-189 (in Chinese with English abstract).
[29] Zhu Y H, Weiner J, Yu M X, Li F M. Evolutionary agroecology: trends in root architecture during wheat breeding. Evol Appl, 2019,12:733-743.
[30] 张荣, 张大勇. 半干旱区春小麦不同年代品种根系生长冗余的比较实验研究. 植物生态学报, 2000,24:298-303.
Zhang R, Zhang D Y. A comparative study on root redundancy in spring wheat varieties released in different years in semi-arid area. Chin J Plant Ecol, 2000,24:298-303 (in Chinese with English abstract).
[31] 田中伟, 樊永惠, 殷美, 王方瑞, 蔡剑, 姜东, 戴廷波. 长江中下游小麦品种根系改良特征及其与产量的关系. 作物学报, 2015,41:613-622.
Tian Z W, Fan Y H, Yin M, Wang F R, Cai J, Jiang D, Dai T B. Genetic improvement of root growth and its relationship with grain yield of wheat cultivars in the middle-lower Yangtze river. Acta Agron Sin, 2015,41:613-622 (in Chinese with English abstract).
[32] 唐淼, 王晓毅, 侯侃, 侯亮亮. 山西晋中小南庄墓地人骨的C、N稳定同位素:试析小麦在山西的推广. 人类学学报, 2018,37:318-330.
Tang M, Wang X Y, Hou K, Hou L L. Carbon and nitrogen stable isotope of the human bones from the Xiaonanzhuang cemetery, Jinzhong, Shanxi: A preliminary study on the expansion of wheat in ancient Shanxi, China. Acta Anthropol Sin, 2018,37:318-330 (in Chinese with English abstract).
[33] 赵佳佳, 乔玲, 郑兴卫, 李晓华, 曹勇, 马小飞, 杨斌, 姬虎太, 乔麟轶, 郑军, 张建诚. 山西小麦育成品种品质性状及HMW-GS组成演变分析. 植物遗传资源学报, 2018,19:1126-1137.
Zhao J J, Qiao L, Zheng X W, Li X H, Cao Y, Ma X F, Yang B, Ji H T, Qiao L Y, Zheng J, Zhang J C. Variation of quality-related traits and HMW-GS of wheat varieties in Shanxi province. J Plant Genet Resour, 2018,19:1126-1137 (in Chinese with English abstract).
[34] 吕学莲, 白海波, 惠建, 田小燕, 杨宸刚, 马斯霜, 蔡正云, 李树华. 籼粳稻杂交衍生RIL系的苗期抗旱性评价. 植物遗传资源学报, 2019,20:556-563
Lyu X L, Bai H B, Hui J, Tian X Y, Yang C G, Ma S S, Cai Z Y, Li SH. Evaluation of seedling drought resistance of RIL derived from indica rice and japonica rice. J Plant Genet Resour, 2019,20:556-563 (in Chinese with English abstract).
[35] Ming D F, Pei Z F, Naeem M S, Gong H J, Zhou W J. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci, 2012,198:14-26.
[36] Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ, 2017,40:4-10.
pmid: 27417527
[37] 慕自新, 张岁岐, 梁爱华, 梁宗锁. 玉米整株根系水导与其表型抗旱性的关系. 作物学报, 2005,31:203-208.
Mu Z X, Zhang S Q, Liang A H, Liang Z S. Relationship between maize root hydraulic conductivity and drought resistance. Acta Agron Sin, 2005,31:203-208 (in Chinese with English abstract).
[38] 王贺正, 李艳, 马均, 张荣萍, 李旭毅, 汪仁全. 水稻苗期抗旱性指标的筛选. 作物学报, 2007,33:1523-1529.
Wang H Z, Li Y, Ma J, Zhang R P, Li X Y, Wang R Q. Screening indexes of drought resistance during seedling stage in rice. Acta Agron Sin, 2007,33:1523-1529 (in Chinese with English abstract).
[39] 赵言文, 丁艳锋, 陈留根, 黄丕生. 水稻旱育秧苗抗旱生理特性研究. 中国农业科学, 2001,34:283-291.
Zhao Y W, Ding Y F, Chen L G, Huang P S. Physiological characteristics of drought resistance of rice dry nursery seedlings. Sci Agric Sin, 2001,34:283-291 (in Chinese with English abstract).
[40] Liao M, Fillery I, Palta J. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Funct Plant Biol, 2004,31:121-129.
[41] 陈成升, 谢志霞, 刘小京. 旱盐互作对冬小麦幼苗生长及其抗逆生理特性的影响. 应用生态学报, 2009,20:811-816.
Chen C S, Xie Z X, Liu X J. Interactive effects of drought and salt stresses on winter wheat seedling growth and physio logical characteristics of stress resistance. Chin J Appl Ecol, 2009,20:811-816 (in Chinese with English abstract).
[42] 魏道智, 宁书菊, 林文雄. 小麦根系活力变化与叶片衰老的研究. 应用生态学报, 2004,15:1565-1569.
Wei D Z, Ning S J, Lin W X. Relationship between wheat root activity and leaf senescence. Chin J Appl Ecol, 2004,15:1565-1569 (in Chinese with English abstract).
[43] Sandhu N, Subedi S R, Singh V K, Sinha P, Kumar S, Singh S P, Ghimire S K, Pandey M, Yadaw R B, Varshney R K, Kumar A. Deciphering the genetic basis of root morphology, nutrient uptake, yield, and yield-related traits in rice under dry direct-seeded cultivation systems. Sci Rep, 2019,9:9334.
pmid: 31249338
[44] 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018,44:988-999.
Li L, Mao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agron Sin, 2018,44:988-999 (in Chinese with English abstract).
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!