作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1197-1202.doi: 10.3724/SP.J.1006.2021.03037
• 研究简报 • 上一篇
马燕斌1(), 王霞2, 李换丽1, 王平3, 张建诚1, 文晋1, 王新胜1, 宋梅芳3, 吴霞1,*(), 杨建平4,*()
MA Yan-Bin1(), WANG Xia2, LI Huan-Li1, WANG Pin3, ZHANG Jian-Cheng1, WEN Jin1, WANG Xin-Sheng1, SONG Mei-Fang3, WU Xia1,*(), YANG Jian-Ping4,*()
摘要:
为评价玉米ZmPHYA1基因在棉花种质资源改良中的价值, 本研究利用农杆菌介导法在陆地棉(Gossypium hirsutum) R15材料中进行了玉米ZmPHYA1基因的遗传转化。经过愈伤组织诱导、抗性愈伤筛选、体细胞分化诱导后获得棉花转基因再生植株。通过田间草铵膦除草剂筛选鉴定抗性植株, 并利用PCR扩增其草铵膦抗性基因和目的基因ZmPHYA1进行分子鉴定, 发现阳性植株对草铵膦除草剂具较好抗性, 并可扩增到256 bp的草铵膦抗性基因和217 bp ZmPHYA1基因的特异条带。进一步通过免疫印迹检测表明, 3个不同转基因株系中外源ZmPHYA1基因可正常表达约170 kD大小的蛋白, 且在不同组织中该外源蛋白均可正常表达。此外, 对转基因植株的不同农艺性状分析表明, 转基因株系株高明显低于受体对照, 而铃重和纤维长度等性状无明显差异。本研究成功获得具有草铵膦抗性和外源ZmPHYA1基因的棉花新种质材料, 为进一步利用光敏色素基因创新种质资源提供了材料来源。
[1] |
Schepens I, Duek P, Fankhauser C. Phytochrome-mediated light signalling in Arabidopsis. Curr Opin Plant Biol, 2004,7:564-569.
doi: 10.1016/j.pbi.2004.07.004 pmid: 15337099 |
[2] |
Wang H Y, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003,8:172-178.
doi: 10.1016/S1360-1385(03)00049-9 pmid: 12711229 |
[3] |
Basu D, Dehesh K Schneider-Poetsch H J, Harrington S E, McCouch S R, Quail P H. Rice PHYC gene: structure, expression, map position and evolution. Plant Mol Biol, 2000,44:27-42.
doi: 10.1023/a:1006488119301 pmid: 11094977 |
[4] |
Dehesh K, Tepperman J, Christensen A H, Quail P H. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet, 1991,225:305-313.
doi: 10.1007/BF00269863 pmid: 2005872 |
[5] |
Takano M, Inagaki N, Xie X Z, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005,17:3311-3325.
pmid: 16278346 |
[6] |
Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M. Isolation and characterization of rice phytochrome a mutants. Plant Cell, 2001,13:521-534.
doi: 10.1105/tpc.13.3.521 pmid: 11251094 |
[7] |
Ogihara Y, Shimizu H, Hasegawa K, Tsujimoto H, Sasakuma T. Chromosome assignment of four photosynthesis-related genes and their variability in wheat species. Theor Appl Genet, 1994,88:383-394.
doi: 10.1007/BF00223649 pmid: 24186023 |
[8] | 王霞, 马燕斌, 宋梅芳, 孟凡华, 李秀全, 杨丽, 吴霞, 杨克诚, 杨建平. 小麦TaPHYA基因亚家族的克隆及表达分析. 作物学报, 2012,38:1354-1360. |
Wang X, Ma Y B, Song M F, Meng F H, Li X Q, Yang L, Wu X, Yang K C, Yang J P. Isolation and expression patterns of TaPHYA gene subfamily in common wheat. Acta Agron Sin, 2012,38:1354-1360 (in Chinese with English abstract). | |
[9] |
Sheehan M J, Farmer P R, Brutnell T P. Structure and expression of maize phytochrome family homeologs. Genetics, 2004,167:1395-1405.
doi: 10.1534/genetics.103.026096 pmid: 15280251 |
[10] |
Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997,94:6809-6814.
pmid: 11038553 |
[11] | 马燕斌, 李壮, 蔡应繁, 周朋, 肖阳, 黄玉碧, 付凤玲, 潘光堂, 杨克诚, 杨建平. 玉米2个光敏色素A基因的克隆、蛋白结构与光诱导表达模式. 中国农业科学, 2010,43:1985-1993. |
Ma Y B, Li Z, Cai Y F, Zhou P, Xiao Y, Huang Y B, Fu F L, Pan G T, Yang K C, Yang J P. Isolation and primary analysis of protein structures and expression patterns responding to different light treatments of two phytochrome A genes in maize (Zea mays L.). Sci Agric Sin, 2010,43:1985-1993 (in Chinese with English abstract). | |
[12] | Boylan M T, Quil P H. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell, 1989,8:765-773. |
[13] |
Jordan E T, Hatfield P M, Hondred D, Talon M, Zeevaart J A, Vierstra R D. Phytochrome A overexpression in transgenic tobacco: correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Plant Physiol, 1995,107:797-805.
doi: 10.1104/pp.107.3.797 pmid: 7716243 |
[14] |
Yang T, Lv R, Li J H, Lin H H, Xi D. Phytochrome A and B negatively regulate salt stress tolerance of nicotiana tobacum via ABA-jasmonic acid synergisticc ross-talk. Plant Cell Physiol, 2018,59:2381-2393.
doi: 10.1093/pcp/pcy164 pmid: 30124925 |
[15] |
Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol, 1999,120:73-82.
pmid: 10318685 |
[16] |
Garg A K, Sawers R J H, Wang H, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome a gene in rice alters plant architecture and increases grain yield. Planta, 2006,223:627-636.
doi: 10.1007/s00425-005-0101-3 pmid: 16136335 |
[17] | Kong S G, Lee D S, Kwak S N, Kim J K, Sohn J K, Kim I S. Characterization of sunlight-grown transgenic rice plants expressing Arabidopsis phytochrome A. Mol Breed, 2004,14:35-46. |
[18] |
Iwamoto M, Kiyota S, Hanada A, Yamaguchi S, Takano M. The multiple contributions of phytochromes to the control of internode elongation in rice. Plant Physiol, 2011,157:1187-1195.
doi: 10.1104/pp.111.184861 pmid: 21911595 |
[19] | 李燕娥, 朱祯, 陈志贤, 吴霞, 王伟, 李淑君, 朱玉, 焦改丽, 吴家和, 徐鸿林, 范小平, 孟晋红, 肖桂芳, 李向辉. 豇豆胰蛋白酶抑制剂转基因棉花的获得. 棉花学报, 1998,10(5):3-5. |
Li Y E, Zhu Z, Chen Z X, Wu X, Wang W, Li S J, Zhu Y, Jiao G L, Wu J H, Xu H L, Fan X P, Meng J H, Xiao G F, Li X H. Obtaining transgenic cotton plants with cowpea trypsin inhibitor gene. Cotton Sci, 1998,10(5):3-5 (in Chinese with English abstract). | |
[20] | Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993,11:122-127. |
[21] | 王霞, 马燕斌, 吴霞, 沈志成, 林朝阳, 李朋波, 孙璇, 王新胜, 李燕娥, 李贵全. 转G10aroA棉花株系的获得及分子生物学鉴定. 中国农业科学, 2014,47:1051-1057. |
Wang X, Ma Y B, Wu X, Shen Z C, Lin C Y, Li P B, Sun X, Wang X S, Li Y E, Li G Q. Molecular biology identification of transgenic cotton lines expressing exogenous G10aroA gene. Sci Agric Sin, 2014,47:1051-1057 (in Chinese with English abstract). | |
[22] |
Christ B, Hochstrasser R, Guyer L, Francisco R, Aubry S, Hörtensteiner S, Weng J K. Non-specific activities of the major herbicide-resistance gene BAR. Nat Plants, 2017,3:937-945.
doi: 10.1038/s41477-017-0061-1 pmid: 29180815 |
[23] |
Siruguri V, Bharatraj D K, Vankudavath R N, Mendu V V R, Gupta V, Goodman R E. Evaluation of Bar, Barnase, and Barstar recombinant proteins expressed in genetically engineered Brassica juncea (Indian mustard) for potential risks of food allergy using bioinformatics and literature searches. Food Chem Toxicol, 2015,83:93-102.
doi: 10.1016/j.fct.2015.06.003 pmid: 26079618 |
[24] |
Carbonari C A, Latorre D O, Gomes G L G C, Velini E D, Owens D K, Pan Z Q, Dayan FD E. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink and WideStrike cotton. Planta, 2016,243:925-933.
doi: 10.1007/s00425-015-2457-3 pmid: 26733464 |
[25] | Hérouet C, Esdaile D G, Mallyon B A, Debruyne E, Schulz A, Currier T, Hendrickx K, Klis R J V D Rouan D. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate- ammonium herbicide in transgenic plants. Regul Toxicol Pharm, 2005,41:134-149. |
[26] |
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu J Z, Zhu Y, Yu S. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530.
doi: 10.1038/nbt.3208 pmid: 25893780 |
[1] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[2] | 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51. |
[3] | 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1a和GhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476. |
[4] | 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203. |
[5] | 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795. |
[6] | 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392. |
[7] | 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333. |
[8] | 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126. |
[9] | 朱国忠,张芳,付洁,李乐晨,牛二利,郭旺珍. 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价[J]. 作物学报, 2018, 44(11): 1631-1639. |
[10] | 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244. |
[11] | 沈超,李定国,聂以春,林忠旭. 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL[J]. 作物学报, 2017, 43(12): 1733-1745. |
[12] | 吕有军,杨卫军,赵兰杰,姚金波,陈伟,李燕,张永山. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479. |
[13] | 杨延龙,肖飞,徐守振,王宇轩,左文庆,梁福斌,张旺锋. 新疆早熟陆地棉品种更替产量提高过程中冠层结构特征的演变[J]. 作物学报, 2017, 43(10): 1518-1526. |
[14] | 陈旭升,狄佳春,周向阳,赵亮. 陆地棉高秆突变体的激素变化与Tp基因的染色体定位[J]. 作物学报, 2017, 43(06): 935-939. |
[15] | 朱守鸿,赵兰杰,刘永昌,李艳军,张新宇,孙杰. 陆地棉微管结合蛋白CLASP家族基因的鉴定及表达分析[J]. 作物学报, 2017, 43(03): 389-398. |
|