欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1161-1168.doi: 10.3724/SP.J.1006.2010.01161

• 耕作栽培·生理生化 • 上一篇    下一篇

不同贮藏条件下棉花和大豆种子的水分变化规律及其预测模型

王婧1,姜朋1,李栋1,2,马强1,2,台述金1,左振朋1,董鲁浩1,孙庆泉1   

  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室,山东泰安271018;2 山东省种子管理总站,山东济南 250100
  • 收稿日期:2010-02-04 修回日期:2010-04-20 出版日期:2010-07-12 网络出版日期:2010-05-20
  • 通讯作者: 孙庆泉,E-mail: qqsun18@163.com
  • 基金资助:

    本研究由山东省优秀中青年科学家奖励基金(2005BS06010),国家重点基础研究发展计划(973计划)项目(2006CB101700)和山东省良种工程产业化项目(鲁农粮种字[2008]6号)基金资助.

Moisture Variationand Modeling of Cotton and Soybean Seeds under Different Storage Conditions

WANG Jing1,JIANG Peng1,LI Dong12,MA Jiang12,TAII Shu-Jin1,ZUO Zhen-Peng1,DONG Lu-Hao1,SUN Qing-Quan1   

  1. 1 Agronomy College of Shandong Agricultural University / National Key Laboratory of Crop Biology, Tai’an 271018, China; 2 Shandong Seed Administration Station, Ji’nan 250100, China
  • Received:2010-02-04 Revised:2010-04-20 Published:2010-07-12 Published online:2010-05-20
  • Contact: SUN Qing-Quan,E-mail: qqsun18@163.com

摘要: 以不同初始水分(IMC)大豆和棉花种子为试材,研究不同贮藏条件下的吸湿解吸规律,并建模验证。结果表明,大豆种子,贮温15℃、25℃和40℃时,4%IMC在相对湿度(RH)≤18.78%、8%和12% IMC在RH≤48.10%条件下解吸,其他条件下吸湿。棉花种子,15℃时,4% IMC在RH≤7.49%、8%IMC在RH≤18.78%和12% IMC在RH≤48.10%条件下解吸,其他条件下吸湿;25℃时,4% IMC在RH≤18.78%、8%和12%IMC在RH≤48.10%条件下解吸,其他条件下吸湿;40℃时,4%IMC在RH≤7.49%、8%和12% IMC在RH≤48.10%条件下解吸,其他条件下吸湿。棉花种子,4% IMC在15℃ RH>55%、25℃ RH>55%和40℃ RH>50%时的安全水分(SWC)依次为10.5%、9.5%和6.5%;8%IMC在15℃RH>60%、25℃ RH>55%和40℃ RH>45%时的SWC分别为10.5%、9.5%和6.5%;12% IMC在15℃ RH>55%、25℃ RH>55%和40℃ RH>45%时的SWC分别为10.5%、9.5%和6.5%。辽豆11在15℃ RH>60%、25℃ RH>55%和40℃RH>45%时,其平衡水分(EMC)超过其SWC(依次为12%、11%和8%);菏豆13在相同条件下水分平衡时的RH比辽豆11高5%。棉花种子EMC在15和25℃ RH>55%、40℃ RH>60%时超过其SWC;大豆种子EMC在25℃ RH>55%、25℃和40℃ RH>60%时超过其SWC。棉花种子的水分平衡时间(d)与IMC(x)、RH(y)和温度(z)的预测模型为d =36.97+1.78x–0.58y–0.58z–0.016xy–0.021xz–0.0012yz+0.007y2,辽豆11的为d =23.29+3.72 x–0.19 y–0.86 z–0.02 xy–0.09 xz–0.008 yz+0.005 y2+0.03 z2,菏豆13的为d =48.64+0.36x–0.44y–1.49z–0.008yz +0.006y2+0.026z2。模型经检验,预测性良好。

关键词: 棉花种子, 大豆种子, 吸湿解吸, 建模, 模型难证

Abstract: The seed equilibrium moisture is an important indicator in evaluating dynamic changes of seed moisture absorption or moisture desorption. In this study, soybean and cotton seeds with different initial moisture contents (IMC) were used to explore the laws of the seed moisture absorption or moisture desorption under different storage conditions(temperature and humidity). The soybean seeds presented moisture desorption when the storage temperature(ST) was 15℃, 25℃, 40℃ and the relative humidity (RH) was less than 18.78% (4% IMC) or 48.10% (8% IMC and 12% IMC), and presented moisture absorption in other storage conditions. The cotton seeds presented moisture desorption under conditions of ST=15℃ and RH<7.49% (4% IMC), 18.78% (8% IMC) or 48.10% (12% IMC). The cotton seeds also presented moisture desorption when ST=25℃, RH<18.78% (4% IMC) or 48.10% (8% IMC and 12% IMC), or ST=40℃, RH<7.49% (4% IMC) or 48.10% (8% IMC and 12% IMC), and moisture absorption in other storage conditions. The safety water content of the cotton seeds with 4% IMC under the condition of ST=15℃ and RH>55%, ST=25℃ and RH>55%, or ST=40℃ and RH>50% was 10.5%, 9.5% and 6.5%, respectively. For cotton seeds with 8% IMC, the safety water content under the condition of ST=15℃ and RH>60%, ST=25℃ and RH>55%, ST=40℃ and RH>45% was 10.5%, 9.5% and 6.5%, respectively. The cotton seeds with 12% IMC had the same safety water content under the condition of ST=15℃ and RH>55%, ST=25℃ and the RH>55% or ST=4℃ and RH>45%. The equilibrium moisture of Liaodou 11 with 4%, 8% and 12% IMC under the condition of ST=15℃ and RH>65%, ST=25℃ and RH>55% or ST=40℃ and RH>45% was above its safety water content (12%, 11%, and 8%). The RH which was above its safety water content of Hedou 13 was about 5% higher than that of Liaodou 11. The equilibrium moisture was above its safety water content when ST=15℃, 25℃ and RH>55% or ST=40℃ and RH>60% for cotton seeds; As well as when ST=25℃ and RH>55% or ST=25℃, 40℃ and RH>60% for soybean seeds. The predictive model of equilibrium time (d) depends on IMC (x), RH (y) and temperature (z) was d =36.97+1.78x–0.58y–0.58z–0.016xy–0.021xz–0.0012yz +0.007y2 for cotton seeds, and d=23.29+3.72x–0.19y–0.86z–0.02xy–0.09xz–0.008yz+0.005y2+0.03z2 for soybean seeds. Through the model test, F<2.39, which indicated that the conformity was high between the predictive value and the test value. The predictive model for Hedou 13 was d=48.64+0.36x–0.44y–1.49z–0.008yz+0.006y2+0.026z2. The predictive models we constructed are very useful in predicting moisture equilibrium time.

Key words: Cotton seed, Soybean seed, Moisture absorption or moisture desorption, Modeling, Model verification

[1] Wang C-Y(王彩云). Experiment on equilibrium moisture content of soybean. J Chin Cereals Oils Assoc (中国粮油学报), 1999, 14(3): 60–61 (in Chinese with English abstract)
[2] Wang C-Y(王彩云). Experiment on storage environment of soybean. West Cereals Oils (西部粮油科技), 2000, 25(4): 48–49 (in Chinese)
[3] Yang L-Q(杨林青), Niu Z-Y(牛智有). Fitting model research of red data equilibrium content. Trans CASE (农业工程学报), 1993, 9(3): 92–97 (in Chinese with English abstract)
[4] Hu K(胡坤), Zhang J-N(张家年). Studies on the factors affecting the adsorption and desorption isotherms of rice. Cereal Feed Ind (粮食饲料与工业), 2004, 10: 30–33 (in Chinese with English abstract)
[5] Murats S, Tanaka F, Hori Y. Effect of initial moisture on the adsorption and desorption equilibrium moisture contents of polished rice. J Faculty Agric, 1993, 38: 161–173
[6] Murats S, Tanaka F. Measurement of the adsorption equilibrium moisture content of polished rice: Effect of initial moisture content on adsorption equilibrium moisture content. J Jpn Soc Agric Machinery, 1995, 57(6): 4552
[7] Liu M-H(刘木华), Cao C-W(曹崇文). Model of safe drying temperature for paddy rice seed. Trans CASE (农业工程学报), 2003, 19(3): 174–177 (in Chinese with English abstract)
[8] Peng G L, Chen X G, Wang Z G, Wu W F. Experimental study on effect of NaCl on equilibrium moisture content of maize. Trans CSAE(农业工程学报), 2003, 19(5): 182–185
[9]
Mohamed L A, Kouhila M, Lahsasni S. Equilibrium moisture content and heat of sorption of gelidium sesquipedale. J Stored Prod Res, 2005, 41: 199–209
[10] Wen Y-X(文友先), Zhang J-N(张家年), Liu J-Y(刘俭英), Zhao Z-F(赵章风), Chen H-T(陈海涛). Using the computer software to construct sorption isotherms. Trans Agric Machinery (农业机械学报), 1998, 29(3): 79–83 (in Chinese with English abstract)
[11] Hu K(胡坤), Zhang J-N(张家年). Selection of fitting models of adsorption and desorption isotherms of rice and optimization of their parameters. Trans CASE (农业工程学报), 2006, 22(1): 153–156 (in Chinese with English abstract)
[12] Sun D W. Comparison and selection of EMC/ERH isotherm equation for rice. J Stored Prod Resh, 1999, 35: 249–264
[13] Zhong J(钟军), Zheng Z(郑卓), Zhi X-D(智旭丹). Mathematical model of multifactor combination on tissue culture for stylosanthes cotyledon. Acta Agron Sin (作物学报), 2008, 34(3): 534–538 (in Chinese with English abstract)
[14] Reddy B S, Chakraverty A. Equilibrium moisture characteristics of raw and parboiled paddy, brown rice, and bran. Drying Techanol, 2004, 22: 837–851
[15] Di J-C(狄佳春), Chen X-S(陈旭升), Xu N-Y(许乃银), Xiao S-H(肖松华), Liu J-G(刘剑光). The rapid determination of cotton seed moisture. Seed (种子), 2001, (4): 69–70 (in Chinese)
[16] Hui D-F(惠大丰). SAS Software Practical Statistical Analysis System (统计分析系统SAS软件实用教程). Beijing: Beijing Aeronautics and Astronautics Publishers, 1996. pp 74–83 (in Chinese)
[17] Liu G-S(刘国顺), Chen Y-Q(陈义强), Wang F(王芳), Ling A-F(凌爱芬), Xi H-A(习红昂). Effects of nitrogen phosphorus potassium and water on lutein in tobacco leaves. Acta Agron Sin (作物学报), 2008, 34(4): 690–699 (in Chinese with English abstract)
[18] Chen B-L(陈兵林), Cao W-X(曹卫星), Zhou Z-G(周治国), Zhu Y(朱艳). Construction and validation of spatial-temporal distribution models on cotton fiber quality indexes. Acta Agron Sin (作物学报), 2007, 33(5): 763–770 (in Chinese with English abstract)
[19] Sun Q(孙群), Hu J(胡晋), Sun Q-Q(孙庆泉). Seed Processing and Storage (种子加工与贮藏). Beijing: Higher Education Press, 2008. pp 243–249 (in Chinese)
[1] 王婧,李晓丽,姜朋,田凤龙,侯文倩,孙庆泉. 不同贮藏条件下小麦和玉米种子的水分变化规律及其建模验证[J]. 作物学报, 2011, 37(01): 158-164.
[2] 陈剑; 倪丕冲; 李梅芳; 陈屹; 黄卓忠. 基于遗传分布模型预测水稻杂交后代性状分布[J]. 作物学报, 1991, 17(03): 178-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!