欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 589-598.doi: 10.3724/SP.J.1006.2013.00589

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通小麦TaDep1基因克隆与特异性标记开发

刘亚男1,夏先春1,何中虎1,2,*   

  1. 1中国农业科学院作物科学研究所/国家小麦改良中心,北京 100081;2 CIMMYT中国办事处,北京 100081
  • 收稿日期:2012-10-21 修回日期:2013-01-16 出版日期:2013-04-12 网络出版日期:2013-01-28
  • 通讯作者: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547
  • 基金资助:

    本研究由国家自然科学基金项目(31161140346)和引进国际先进农业科学技术计划(948计划)重大国际合作项目(2011-G3)资助。

Characterization of Dense and Erect Panicle 1 Gene (TaDep1) Located on Common Wheat Group 5 Chromosomes and Development of Allele-Specific Markers

LIU Ya-Nan1,XIA Xian-Chun1,HE Zhong-Hu1,2,*   

  1. 1 Institute of Crop Sciences/National Wheat Improvement Center, Beijing 100081, China; 2 CIMMYT China Office, c/o Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-10-21 Revised:2013-01-16 Published:2013-04-12 Published online:2013-01-28
  • Contact: 何中虎, E-mail: zhhecaas@163.com, Tel: 010-82108547

摘要:

OsDep1 (dense and erect panicle 1)控制水稻产量性状,影响穗长、直立性和着粒密度。根据水稻OsDep1基因序列,采用同源克隆技术克隆了普通小麦第5同源群染色体上的TaDep1基因,它包含5个外显子和4个内含子,与水稻OsDep1基因结构相似。TaDep1-A1TaDep1-B1TaDep1-D1的编码序列长度分别为918888900 bp,编码305295299个氨基酸残基。在普通小麦品种中检测到5TaDep1-A1等位变异、4TaDep1-B1等位变异和2TaDep1-D1等位变异。根据TaDep1-A1TaDep1-B1位点不同等位变异间的SNPInDel,开发了3对显性互补标记和1个共显性标记,可以准确鉴别不同等位基因。共显性标记dep19是根据TaDep1-B15外显子一个30 bpInDel开发的,可准确区分TaDep1-B1cTaDep1-B1aTaDep1-B1bTaDep1-B1d。用这些标记对406份小麦品种进行检测,不同基因型的千粒重、株高、穗长、小穗数和穗节间均差异不显著,说明TaDep1基因与我国现有小麦品种的产量性状相关不显著。

关键词: 普通小麦, 直立密穗基因, 等位变异, 基因特异性标记

Abstract:

Dense and erect panicle 1 (OsDep1) gene is an important QTL controlling yield associated traits such as panicle length, erect type, and grain density in rice. In the present study, full-length genomic DNA sequences of TaDep1 on common wheat group 5 chromosomes were cloned by homologous cloning approach based on the sequences of rice OsDep1. TaDep1 has five exons and four introns, similar to that of rice OsDep1. The coding sequences of TaDep1-A1, TaDep1-B1, and TaDep1-D1 were 918, 888, and 900 bp, encoding polypepetides of 305, 295, and 299 amino acids, respectively. Five allelic variants on TaDep1-A1 locus, four on TaDep1-B1 locus, and two on TaDep1-D1 locus were identified. Three pairs of complementary dominant markers and one codominant marker were developed based on the sequence polymorphisms presented in allelic variants of TaDep1-A1 and TaDep1-B1. The codominant marker dep19, which can accurately discriminate the allelic variants of TaDep1-B1c from those of TaDep1-B1a, TaDep1-B1b,and TaDep1-B1d, was developed from a 30 bp InDel of different allelic variants at the fifth exon of TaDep1-B1. No significant association was found among the yield associated traits such as thousand-kernel weight, plant height, panicle length, spikelet number and spikelet spacing in 406 cultivars, indicating that these genes have no significant effect on the yield-related traits in current Chinese wheat cultivars.

Key words: Common wheat (Triticum aestivum L.), Dense and erect panicle1 (Dep1) gene, Allelic variation, Allele-specific markers

[1]He Z-H(何中虎), Xia X-C(夏先春), Chen X-M(陈新民), Zhuang Q-S(庄巧生). Progress of wheat breeding in China and the future perspective. Acta Agron Sin (作物学报), 2011, 37(2): 202–215 (in Chinese with English abstract)



[2]Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1–10



[3]Wang R-X(王瑞霞). QTL Analysis of Grain Filling Rate and Related Traits in Wheat (Triticum aestivum L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, 2008 (in Chinese with English abstract)



[4]Marza F, Bai G H, Carver B F, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning 7840 × Clark. Theor Appl Genet, 2006, 112: 688–698



[5]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167–178



[6]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753–766



[7]Xiao Y-G(肖永贵). Genetic Improvement of Yield Traits in Shandong Wheat Cultivars and Molecular Dissection of Core Parent Zhou 8425B. PhD. Dissertation of Northwest A&F University, 2011 (in Chinese with English abstract)



[8]Zhuang Q-S(庄巧生). Wheat Improvement and Pedigree Analysis in Chinese Wheat Cultivars (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003. p 502 (in Chinese)



[9]Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusi? D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington P A, Aragués R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet, 2005, 110: 865–880



[10]Kumar N, Kulwal P L, Gaur A, Tyagi A K, Khurana J P, Khurana P, Balyan H S, Gupta P K. QTL analysis for grain weight in common wheat. Euphytica, 2006, 151: 135–144



[11]Sun X Y, Wu K, Zhao Y, Kong F M, Han G Z, Jiang H M, Huang X J, Li R J, Wang H G, Li S S. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165: 615–624



[12]Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal H S, Chhuneja P, Lagu M, Gupta V. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet, 2010, 51: 421–429



[13]Jiang Q Y, Hou J, Hao C Y, Wang L F, Ge H M, Dong Y S, Zhang X Y. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 2011, 11: 49–61



[14]Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211–223



[15]Ma D Y, Yan J, He Z H, Wu L, Xia X C. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed, 2012, 29: 43–52



[16]Kong F N, Wang J Y, Zou J C, Shi L X, Jin D M, Xu Z J, Wang B. Molecular tagging and mapping of the erect panicle gene in rice. Mol Breed, 2007, 19: 297–304



[17]Yan C J, Zhou J H, Yan S, Chen F, Yeboah M, Tang S Z, Liang G H, Gu M H. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet, 2007, 115: 1093–1100



[18]Zhou Y, Zhu J Y, Li Z Y, Yi C D, Liu J, Zhang H G, Tang S Z, Gu M H, Liang G H. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 2009, 183: 315–324



[19]Wang J Y, Nakazaki T, Chen S Q, Chen W F, Saito H, Tsukiyama T, Okumoto Y, Xu Z J, Tanisaka T. Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet, 2009, 119: 85–91



[20]Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G G, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494–497



[21]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171



[22]Yi X H, Zhang Z J, Zeng S Y, Tian C Y, Peng J C, Li M, Lu Y, Meng Q C, Gu M H, Yan C J. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). J Genet Genomics, 2011, 38: 217–223



[23]Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640–1643



[24]He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47–58



[25]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213–221



[26]He X Y, He Z H, Ma W, Appels R, Xia X C. Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed, 2009, 23: 553–563



[27]Gautier M F, Cosson P, Guirao A, Alary R, Joudrier P. Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci, 2000, 153: 81–91



[28]Lillemo M, Simeone M C, Morris C F. Analysis of puroindoline a and b sequences from Triticum aestivum cv. ‘Penawawa’ and related diploid taxa. Euphytica, 2002, 126: 321–331



[29]Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier M F, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell, 2005, 17: 1033–1045

[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[3] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[4] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[5] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[6] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[7] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[8] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[9] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[10] 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953.
[11] 王娟,董承光,刘丽,孔宪辉,王旭文,余渝. 棉花适宜机采相关性状的SSR标记关联分析及优异等位基因挖掘[J]. 作物学报, 2017, 43(07): 954-966.
[12] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[13] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495.
[14] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[15] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!