作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1105-1110.doi: 10.3724/SP.J.1006.2013.01105

• 耕作栽培·生理生化 • 上一篇    下一篇



  1. 1农业应用新技术北京市重点实验室 / 北京农学院植物科学技术学院,北京 102206;2中国农业科学院农业环境与可持续发展研究所水资源与旱作农业研究室,北京 100081
  • 收稿日期:2012-10-16 修回日期:2013-01-18 出版日期:2013-06-12 网络出版日期:2013-03-22
  • 通讯作者: 李玉中, E-mail: liyz-jie@163.com, Tel: 010-82109399
  • 作者简介:李玉中, E-mail: liyz-jie@163.com, Tel: 010-82109399
  • 基金资助:


Variation of Priestley-Taylor Model Parameter in Rain Fed Spring Maize Field

GUO Jia-Xuan1,MEI Xu-Rong2,LI Qiao-Zhen2,YAN Chang-Rong2,LI Yu-Zhong2,*   

  1. 1 Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; 2 Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China??
  • Received:2012-10-16 Revised:2013-01-18 Published:2013-06-12 Published online:2013-03-22
  • Contact: 李玉中, E-mail: liyz-jie@163.com, Tel: 010-82109399
  • About author:李玉中, E-mail: liyz-jie@163.com, Tel: 010-82109399


Priestley-Taylor(PT)参考作物蒸散(ET0)估算模式系数(α)的本地化研究,对于确定水资源高效利用的半旱地农业生产措施及精准灌溉具有非常重要的意义。本文以FAO(1998)推荐的Penman-Monteith (PM)参考作物蒸散估算方法为标准,采用涡度相关技术并根据气象数据信息,监测半干旱气候条件下旱作春玉米农田尺度水、热交换传输过程,以分析Priestley-Taylor模式参数α的变化特征并确定其本地化估算参数值。结果表明,年时间尺度变化过程中高海拔半干旱气候条件下根据PT模式推荐系数α=1.26确定的参考作物蒸散量(ET0-PT 1.26)估算值,在11月至来年4月份非作物生长季期间平均偏低21.2%,在5月至9月份旱作春玉米生育期内平均高于PM模式的参考作物蒸散量(ET0-PM)估算值5.5%,研究站点旱作春玉米生长季本地化适宜的PT模式系数α值为1.15±0.06。在季节变化过程中,旱作春玉米农田近正午时刻实际PT模式系数平均值呈单峰型变化趋势,春玉米抽雄抽穗开花期达到高峰,平均值为0.67±0.08,苗期最低,仅为0.26±0.13,全生育期平均值为0.50±0.21。若要在半干旱气候地区根据PT模式准确估算参考作物蒸散量,需进行PT模式参数的本地化研究。

关键词: 旱作春玉米农田, Priestley-Taylor系数, 参考作物蒸散, 涡度相关法


The study on Priestley-Taylor (PT) reference crop evapotranspiration model coefficient (α) in local area is of great significance in semi-arid agricultural water resources efficient use and precision irrigation in corn. Here, based on the FAO (1998)-recommended Penman-Monteith (PM) reference crop evapotranspiration as a standard method, we determined the water and heat exchange and its estimated parameters by the eddy covariance technique and Priestley-Taylor model under local climatic conditions. The results indicated that the estimated values of reference crop evapotranspiration (ET0-PT 1.26) gained from PT model-recommended coefficient (α = 1.26) lowed by 21.2% on an average during non-growth stages (from November to April next year), and reached an average of 5.5% higher than those from PM model reference crop evapotranspiration (ET0-PM) from May to September. The local PT model coefficient α value was 1.15 ± 0.06. The average PT model coefficient at noon during growth stages showed a single peak changing trend with the highest value of 0.67 ± 0.08 from tasseling to flowering stage and with the lowest value of 0.26 ± 0.13 at seedling stage. In conclusion, if the reference crop evapotranspiration is necissery to be estimated accurately by PT model in the semi-arid climate area, the local PT parameters should be studied firstly.

Key words: Rain fed spring maize, Priestley-Taylor parameter, Reference crop evapotranspiration, Eddy correlation method

[1]Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev, 1972, 100: 81–92

[2]Pereira A R. The Priestley-Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agric For Meteorol, 2004, 125: 305–313

[3]Sumner D M, Jacobs J M. Utility of Penman-Monteith, Priestley–Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. J Hydrol, 2005, 308: 81–104

[4]Zhang Y Q, Liu C M, Yu Q, Shen Y J, Kendy E, Kondoh A, Tang C Y, Sun H Y. Energy fluxes and the Priestley–Taylor parameter over winter wheat and maize in the North China Plain. Hydrol Process, 2004, 18: 2235–2246

[5]Mouida A, Alaa N. Identification of Priestley-Taylor transpiration Parameters used in TSEB model by Genetic Algorithm. Int J Computer Sci Issues, 2011, 8: 188–197

[6]Anderson R G, Jin Y F, Goulden M L. Assessing regional evapotranspiration and water balance across a Mediterranean montane climate gradient Original. Agric For Meteorol, 2012, 166–167: 10–22

[7]Smith R C G, Barrs H D, Meyer W S. Evaporation from irrigated wheat estimated using radiative surface temperature. Agric For Meteorol, 1989, 48: 331–344

[8]Yao Y J, Qin Q M, Ghulam A, Liu S M, Zhao S H, Xu Z W, Dong H. Simple method to determine the Priestley-Taylor parameter for evapotranspiration estimation using Albedo-VI triangular space from MODIS data. J Appl Remote Sens, 2011, 5(053505): 1–16

[9]Shutleworth W J. Evaporation model in hydrology. In: Schmugge T J, Andre J C, eds. Land Surface Evaporation—Measurement and Parameterizaton. New York: Springer-Verlag, 1992. pp 93–120

[10]Brutsaert W. Evaporation into the Atmosphere. Dordrecht, Holland, D. Reidel Publishing Company, 1982. p 299

[11]Flinta A L, Childs S W. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clear cut. Agric For Meteorol, 1991, 56: 247–260

[12]Baldocchi D D. A comparative study of mass and energy exchange over a closed C3 (wheat) and an open C4 (corn) canopy: I. The partitioning of available energy into latent and sensible heat exchange. Agric For Meteorol, 1994, 67: 191–220

[13]Guo J-X(郭家选), Li Q-Z(李巧珍), Yan C-R(严昌荣), Mei X-R(梅旭荣), Li Y-Z(李玉中). Effects of small area irrigation on water and heat transport of winter wheat field under drought condition. Trans CSAE (农业工程学报), 2008, 24(12): 20–24 (in Chinese with English abstract)

[14]Shi C-L(史常丽), Guo J-X(郭家选), Yan C-R(严昌荣), Li Y-Z(李玉中), Mei X-R(梅旭荣). Diurnal variation of instantaneous gas exchange over canopy and leaf level of spring corn in arid areas. Trans CSAE (农业工程学报), 2007, 23(1): 24–30 (in Chinese with English abstract)

[15]Allen R G, Pereira L S, Raes D, Smith M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper No. 56. Rome: FAO, 1998. pp 39–43

[16]Fisher J B, Whittaker R J, Malhi Y. ET come home: potential evapotranspiration in geographical ecology. Global Ecol Biogeogr, 2011, 20: 1–18

[17]Yan H-F(闫浩芳), Shi H-B(史海滨), Xue Z(薛铸), Zhang Y-Q(张义强), Liu H-Y(刘宏云). Comparison of estimating ET0 with different methods in Hetao Irrigation District in Inner Mongolia. Trans CSAE (农业工程学报), 2008, 24(4): 103–106 (in Chinese with English abstract)

[18]Wang S-G(王书功), Kang E-S(康尔泗), Jin B-W(金博文), Wang X-P(王新平). A study of estimation of evapotranspiration on grass land in the mountains of Hei River Basin. J Glaciol Geocryol (冰川冻土), 2003, 25(5): 558–565 (in Chinese with English abstract)

[19]Zhang Z-M(张志明). On the calculation of the fluxes of sensible heat and latent heat in the surface layer over saturated underlying surface. J Chengdu Univ Sci Technol (成都科技大学学报), 1984, (2): 89–96 (in Chinese with English abstract)

[20]Li X-B(李新波), Sun H-Y(孙宏勇), Zhang X-Y(张喜英), Shen Y-J(沈彦俊), Dong B-D(董宝娣), Hu C-S(胡春胜). Analysis of irrigation demands and evapotranspiration in the piedmont of Taihang Mountain. Trans CSAE (农业工程学报), 2007, 23(2): 26–30 (in Chinese with English abstract)
No related articles found!
Full text



No Suggested Reading articles found!