欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (03): 439-446.doi: 10.3724/SP.J.1006.2014.00439

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

等位变异Vrn-B1aVrn-B1b的春化效应及其在黄淮冬麦区小麦品种中的分布

王轩,鞠丽萍,刘芳军,张钰玉,张帆,付晓洁,冯毅,张晓科*   

  1. 西北农林科技大学农学院,  陕西杨凌 712100
  • 收稿日期:2013-05-22 修回日期:2013-10-22 出版日期:2014-03-12 网络出版日期:2014-01-16
  • 通讯作者: 张晓科, E-mail: zhangxiaoke66@126.com
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2014CB138100), 国家自然科学基金项目(30971770)和西北农林科技大学唐仲英育种基金资助。

Vernalization Effects of Dominant Alleles Vrn-B1a and Vrn-B1b and Their Distributions in Cultivars from Yellow and Huai River Valleys Facultative Winter Wheat Zone

WANG Xuan,JU Li-Ping,LIU Fang-Jun,ZHANG Yu-Yu,ZHANG Fan,FU Xiao-Jie,FENG Yi,ZHANG Xiao-Ke*   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, China
  • Received:2013-05-22 Revised:2013-10-22 Published:2014-03-12 Published online:2014-01-16
  • Contact: 张晓科, E-mail: zhangxiaoke66@126.com

摘要:

春化基因Vrn-B1是决定黄淮冬麦区小麦品种冬春性的主要基因之一, 研究其不同显性等位变异的低温春化作用效应及分布, 对该区小麦品种选育和推广具有重要意义。以等位变异Vrn-B1a品种皖麦33与等位变异Vrn-B1b品种豫麦34为亲本构建杂交组合, 对其F2代进行5~35 d的低温春化处理, 并在温室(22±3℃,16 h/8 h)鉴定抽穗期, 结合分子标记分析低温春化处理时间对各等位变异型抽穗期的影响。同时对228个黄淮冬麦区小麦品种进行相关位点分子检测, 分析该基因等位变异的分布特点。各春化处理均使两种等位变异小麦植株的抽穗期提前, Vrn-B1a抽穗时间比Vrn-B1b晚约2 d。从春化处理当天至处理后25 d, 2种等位变异类型的抽穗时间均随春化时间的延长而缩短; 继续延长春化时间, 抽穗期不再缩短, 表明满足两种等位变异完成春化的低温时间为20~25 d。在228个品种中, Vrn-B1位点有214(93.9%)隐性和14(6.1%)显性等位变异。其中, 显性等位变异Vrn-B1a6, 占总品种数的2.6%; Vrn-B1b8, 占总品种数的3.5%。在黄淮冬麦区小麦品种中, 春化基因Vrn-B1位点至少存在Vrn-B1aVrn-B1b两种显性等位变异类型, 两种等位变异类型纯合小麦植株的抽穗时间不同。

关键词: 普通小麦, 春化效应, Vrn-B1a, Vrn-B1b

Abstract:

Vrn-B1 is a key gene controlling vernalization of wheat in the Yellow and Huai River Valleys Facultative Winter Wheat Zone of China. This study aimed to understand the allelic distribution at Vrn-B1 locus and their effects on heading date of wheat cultivars. To compare the vernalization responses of dominant alleles Vrn-B1a with Vrn-B1b on heading date, we planted F2 plants derived from the cross between Yumai 34 (Vrn-B1b genotype) and Wanmai 33 (Vrn-B1a genotype) in greenhouse (22±3°C and 16 h day/8 h night) with 4°C treatment for different periods (5–35 d). Besides, the Vrn-B1 allelic variation and distribution of 228 historic and current wheat cultivars were evaluated using molecular markers. The results showed that heading date of Vrn-B1a genotype was about two days later than that of Vrn-B1b genotype. Vernalization treatment at 4°C for 5–25 d obviously shortened the period from sowing to heading in genotype Vrn-B1a or Vrn-B1b; however, continuous vernalization had no effect to further accelerate heading. Therefore, 20–25 d is enough for vernalization in both genotypes. In the 228 cultivars, 214 carried the recessive vrn-B1 allele with the frequency of 93.9%, and the remaining 14 cultivars had dominantalleles on Vrn-B1 locus, including6 (2.6%) of Vrn-B1a genotype and 8 (3.5%) of Vrn-B1b genotype. The two dominant alleles on Vrn-B1 locus had different effects to accelerate heading in winter wheat, and can be used in wheat breeding programs to improve adaptability and cold tolerance in wheat.

Key words: Triticum aestivum L., Vernalization effect, Vrn-B1a, Vrn-B1b

[1]Zhang X K, Xiao Y G, Zhang Y, Xia X C, Dubcovsky J, He Z H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci, 2008, 48: 458–470



[2]Trevakis B, Bagnall D J, Ellis M H, Peacock W J, Dennis E S. MADS box genes control vernalization-induced flowering incereals. Proc Natl Acad Sci USA, 2003, 100: 13099–13104



[3]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene Vrn1. Proc Natl Acad Sci USA, 2003, 100: 6263–6268



[4]Law C N, Worland A J, Giorgi B. The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity, 1976, 36: 49–58



[5]Nelson J C, Sorrells M E, Van-Deynze A E, Lu Y H, Atkinson M, Bemard M, Leroy P, Fails J D, Anderson J A. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 1995, 141: 721–731



[6]Barrett B, Bayram M, Kidwell K. Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat (Triticum aestivum L.) using reciprocal mapping populations. Plant Breed, 2002, 121: 400–406



[7]Toth B, Galiba G, Feher E, Sutka J, Snape J W. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet, 2003, 107: 509–514



[8]Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K. Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 104: 571–576



[9]McIntosh R A, Hart G E, Devos K M, Gale M D, Rogers W J. Catalogue of gene symbols for wheat. In: Proc 9th Int Wheat Genet Symp. Saskatoon: University Extention Press, 1998. pp 1–235



[10]Pugsley A T. A genetic analysis of spring-winter habit for growth in wheat. J Agric Res, 1971, 22: 21–23



[11]Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the Vrn-1 promoter region in polyploid wheat. Theor Appl Genet, 2004, 109: 1677–1686



[12]Stelmakh A F. Genetic systems regulating flowering response in wheat. Euphytica, 1998, 100: 359–369



[13]Fu D, Szucs P, Yan L, Helguera M, Skinner J S, von Zitzewitz J, Dubcovsky J. Large deletions within the first intron in Vrn-1 are associated with spring growth habit in barley and wheat. Mol Gen Genet, 2005, 273: 54–65



[14]Santra D K, Santra M, Allan R E, Campbell K G, Kidwell K K. Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the pacic northwest region of the U.S.A., Plant Breed, 2009, 128: 576–584



[15]Shcherban A B, Efremova T T, Salina E A. Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Mol Breed, 2012, 29: 675–685



[16]Shcherban A B, Khlestkina E K, Efremova T T, Salina E A. The effect of two differentially expressed wheat Vrn-B1 alleles on the heading time is associated with structural variation in the first intron. Genetica, 2013, 141: 133–141



[17]Milec Z, Tomková L, Sumíková T, Pánková K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed, 2012, 30: 317–323



[18]Zhang J, Wang Y Y, Wu S W, Yang J P, Liu H W, Zhou Y. A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theor Appl Genet, 2012, 125: 1697–1704



[19]Loukoianov A, Yan L, Blechl A, Sanchez, A., Dubcovsky, J. Regulation of Vrn-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol, 2005, 138: 2364–2373



[20]Li C, Dubcovsky J. Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J, 2008, 55: 543–554



[21]Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet, 2008, 116: 383–394



[22]Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581–19586



[23]Iwaki K, Nakagawa K, Kuno H, Kato K. Ecogeographical differentiation in east Asian wheat, revealed from the geographical variation of growth habit and Vrn genotype. Euphytica, 2000, 111: 137–143



[24]杨芳萍, 韩利明, 阎俊, 夏先春, 张勇, 曲延英, 王忠伟, 何中虎. 春化和光周期基因等位变异在23个国家小麦品种中的分布. 作物学报, 2011, 37: 1917–1925



Yang F P, Han L M, Yan J, Xia X C, Zhang Y, Qu Y Y, Wang Z W, He Z H. Distribution of allelic variation for genes of vernalization and photoperiod among wheat cultivars from 23 Countries. Acta Agron Sin, 2011, 37: 1917–1925 (in Chinese with English abstract)



[25]Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, Kato K. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Mol Breed, 2013, 31: 27–37



[26]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4326



[27]Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfeld A, Akashi Y, Kato K, Dubcovsky J. Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Gene, 2010, 3: 543–552



[28]Emtseva M V, Efremova T T, Arbuzova V S. Heading time of substitution and near-isogenic lines of common wheat with dominant alleles Vrn-B1a and Vrn-B1c. Russ J Genet: Appl Res, 2012, 2: 304–310

[1] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[2] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[3] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[4] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[5] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[6] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[7] 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953.
[8] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[9] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495.
[10] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[11] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[12] 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159.
[13] 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831.
[14] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
[15] 岳爱琴,李昂,毛新国,昌小平,柳玉平,李润植,景蕊莲. 小麦果聚糖合成酶基因6-SFT-D多态性及其与6-SFT-A2的累加效应[J]. 作物学报, 2016, 42(01): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!