欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (11): 1575-1587.doi: 10.3724/SP.J.1006.2017.01575

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

基于寡核苷酸探针套painting的中国春非整倍体高清核型及应用

王丹蕊1,杜培1,裴自友2,庄丽芳1,*,亓增军1,*   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京 210095; 2山西省农业科学院作物科学研究所,山西太原 030030
  • 收稿日期:2017-03-06 修回日期:2017-07-23 出版日期:2017-11-12 网络出版日期:2017-08-11
  • 通讯作者: 亓增军, E-mail: zjqi@njau.edu.cn; 庄丽芳, E-mail: lfzhuang@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31370385)和山西省农业科学院所长青年引导专项(yydzx09)资助。

Development and Application of High Resolution Karyotypes of Chinese Spring Aneuploids

WANG Dan-Rui1,DU Pei1,PEI Zi-You2,ZHUANG Li-Fang1,*,QI Zeng-Jun1,*   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; 2 Crop Science Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
  • Received:2017-03-06 Revised:2017-07-23 Published:2017-11-12 Published online:2017-08-11
  • Contact: 亓增军, E-mail: zjqi@njau.edu.cn; 庄丽芳, E-mail: lfzhuang@njau.edu.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31370385) and Institute Director Foundation of Shanxi Academy of Agricultural Sciences for Youth (yydzx09).

摘要:

基于寡核苷酸探针套painting的染色体鉴定技术简单、经济和高效, 可以促进小麦品种及亲缘物种染色体识别和变异体鉴定, 提高染色体工程效率。我们前期开发了寡核苷酸探针套, 包含pAs1-1、pAs1-3、AFA-4、(GAA)10和pSc119.2-1共5个探针。本研究通过一次荧光原位杂交(FISH), 对源于17个非整倍体的18份材料分析发现, 其中14个染色体组成正确, 可以清晰识别相应的缺体、四体和端体。还构建了基于寡核苷酸探针套涂染的、能准确识别3个基因组和7个部分同源群染色体的高清核型, 发现4个非整倍体发生变异, 其中从N5BT5D中鉴定出一个可能的小片段相互易位系T6AS·6AL-6DL和T6DS·6DL-6AL。进一步对7个地方品种、10个栽培品种(系)和1个人工合成小麦分析, 发现15条染色体存在多态性, 涉及6条B组(除4B)、5条A组(除1A和3A)和4条D组(1D、2D、4D和7D)染色体, 可以清晰识别我国小麦生产上广泛应用的3种易位类型(T1RS·1BL、T6VS·6AL及相互易位T1RS·7DL和T7DS·1BL), 省去了基因组原位杂交(GISH)程序。另外, 对5个亲缘物种分析发现, 该探针套可以识别栽培一粒小麦、硬粒小麦Langdon、荆州黑麦、长穗偃麦草(2n=2x=14)全部和中间偃麦草30条染色体, 并构建了这5个物种的核型。本研究结果证实该寡核苷酸探针套可以有效用于小麦及亲缘物种染色体鉴定, 高清晰的中国春非整倍体核型为小麦染色体工程提供了参考标准。

关键词: 寡核苷酸探针套, 染色体painting, 染色体多样性, 小麦易位系, 非整倍体

Abstract:

Oligonucleotide (oligo hereafter) multiplex-based chromosome painting facilitates chromosome identification of both wheat cultivars and its relatives in a simple, easy and high efficient way. In this study, an oligo multiplex containing oligos pAs1-1, pAs1-3, AFA-4, (GAA)10, and pSc119.2-1 developed earlierwas used for chromosome painting of 18 accessions from 17 Chinese Spring (CS) aneuploids. The high resolution karyotypes allowed to clearly distinguish individualwheat chromosomes. Fourteen aneuploidshad theexpected chromosome constitutions whereasthe other four had chromosome variations including one witha possible small segmental reciprocal translocation T6AS·6AL-6DL and T6DS·6DL-6AL occurred in N5BT5D. The following analysis on eightlandraces,ninecultivars (lines), and one synthetic hexaploid wheat, observed karyotypediversities from 15 chromosomes including six B- (except for 4B), five A- (except for 1A and 3A), and four D-genome (1D, 2D, 4D, and 7D) chromosomes. The three widely-used translocations in China, i.e. T1BL·1RS, T6AL·6VS and the reciprocal translocation T1RS·7DL and T7DS·1BL, were clearly detected after only oncefluorescence in situ hybridization(FISH) using the oligo multiplex and without genomic in situ hybridization (GISH). This oligo multiplex also produced rich signals in all chromosomes of Triticum monococum, rye cultivar ‘Jingzhouheimai’, durum wheat ‘Langdon’, and Thinopyrum elongatum, and 30 chromosomes of Thinopyrum intermedium. The karyotypes of these five species were thus developed. These results indicate that oligo multiplex-based chromosome painting will play active roles on chromosome identifying, and provide a reference for the standard karyotypes of CS aneuploids.

Key words: Oligonucleotide multiplex probe, Chromosome painting, Chromosome diversity, Wheat translocations, Aneuploids

[1] Tack J, Barkley A, Nalley L L. Effect of warming temperatures on US wheat yields. Proc Natl Acad Sci USA, 2015, 112: 6931–6936
[2] Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell D B, Martre P, Ruane A C, Wallach D, Jones J W, Rosenzweig C, Aggarwal P K, Alderman P D, Anothai J, Basso B, Biernath C, Cammarano D, Challinor A, Deryng D, De Sanctis G, Doltra J, Fereres E, Folberth C, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt L A, Izaurralde R C, Jabloun M, Jones C D, Kersebaum K C, Kimball B A, Koehler A K, Kumar S N, Nendel C, O’Leary G J, Olesen J E, Ottman M J, Palosuo T, Vara Prasad P V, Priesack E, Pugh T A M, Reynolds M, Rezaei E E, Rötter R P, Schmid E, Semenov M A, Shcherbak I, Stehfest E, Stöckle C O, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wall G W, Wang E, White J W, Wolf J, Zhao Z, Zhu Y.. Similar estimates of temperature impacts on global wheat yield by three independent methods. NatClimat Change, 2016, 6: 1130–1136
[3] Chan Simon W L. Chromosome engineering: power tools for plant genetics. Trends Biotechnol, 2010, 28: 605–610
[4] Jiang J M, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73: 199–212
[5] Cao A Z, Xing L P, Wang X Y, Yang X M, Wang W, Sun Y L, Qian C, Ni J L, Chen Y P, Liu D J, Wang X, Chen P D. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727–7732
[6] Endo T R, Gill B S. The deletion stocks of common wheat. J Hered, 1996, 87: 295–307
[7] Zheng Q, Li B, Mu S M, Zhou H P, Li Z S. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49:1109–1114
[8] Nasuda S, Hudakova S, Schubert I,Endo T R. Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA, 2005, 102: 9842–9847
[9] Friebe B, Kynast R G, Gill B S. Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chrom Res, 2000, 8: 501–511
[10] Gyawali Y P, Nasuda S, Endo T R. Cytological dissection and molecular characterization of chromosome 1R derived from ‘Burgas 2’ common wheat. Genes Genet Syst, 2009, 84: 407–416
[11] Zhuang L F, Liu P, Liu Z Q, Chen T T, Wu N, Sun L, Qi Z J. Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat. Mol Breed, 2015, 35: 133
[12] Chen P D, You C F, Hu Y, Chen S W, Zhou B, Cao A Z, Wang X. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed, 2013, 31:477–484
[13] Zhang R Q, Hou F, Feng Y G, Zhang W. Zhang M Y, Chen P D. Characterization of a Triticum aestivum–Dasypyrum villosum T2VS•2DL translocation line expressing a longer spike and more kernels traits. Theor Appl Genet, 2015, 128: 2415–2425
[14] Sepsi A, Molnár I, Szalay D, Molnár-Láng M. Characterization of a leaf rust-resistant wheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet, 2008, 116: 825–834
[15] Mahelka V, Kopeck D, Baum B R. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol Biol Evol, 2013, 30:2065–2086
[16] Danilova T V, Zhang G., Liu W X,Friebe B,Gill B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor Appl Genet, 2017, 130: 549–556
[17] Rey M D, Calderón M C, Prieto P. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front Plant Sci, 2015, 6: 160
[18] Song L Q, Lu Y Q, Zhang J P, Pan C L, Yang X M, Li X Q, Liu W H, Li, L H. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet, 2016, 129: 1023–1034
[19] Li H H, Jiang B, Wang J C, Lu Y Q, Zhang J P, Pan C L, Yang X M, Li X Q, Liu W H, Li L H. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet, 2017, 130: 109–121
[20] Qi Z J, Du P, Qian B L, Zhuang L F, Chen H F, Chen T T, Shen J, Guo J, Feng Y G, Pei Z Y. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS•2BL) translocation line. Theor Appl Genet, 2010, 121: 589–597
[21] Pu J, Wang Q, Shen Y F, Zhuang L F, Li C X, Tan M F, Bie T D, Chu C G, Qi Z J. Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations. Theor Appl Genet, 2015, 128: 1319–1328
[22] Badaeva E D, Dedkova O S, Koenig J, Bernard S, Bernard M . Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. Theor Appl Genet, 2008, 117: 803–811
[23] Niu Z X, Klindworth D L, Friesen T L, Chao S M, Jin Y, Cai X W, Xu S S. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics, 2011, 187: 1011–1021
[24] Liu W X, Koo DH, Xia Q, Li C X, Bai F Q, Song Y L, Friebe B, Gill B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet,2017, DOI 10.1007/s00122-017-2855-y
[25] Ishii T, Ueda T, Tanaka H, Hisashi T. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chrom Res, 2010, 18: 821–831
[26] Endo T R. The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chrom Res, 2007, 15: 67–75
[27] Bie T D, Cao Y P, Chen P D. Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum–Haynaldia villosa amphiploid. J Integr Plant Biol, 2007, 49: 1619–1626
[28] Ma X H, Wang Q, Wang Y Z, Ma J Y, Wu N, Ni S,Luo T X, Zhuang L F, Chu C G, Cho S W,Tsujimoto H, Qi ZJ.Chromosome aberrations induced by zebularine in triticale. Genome, 2016, 59: 485–492
[29] Tiwari V K, Heesacker A, Riera-Lizarazu O, Gunn H, Wang S C, Wang Y, Gu Y Q, Paux E, Koo D H, Kumar A, Luo M C, Lazo G, Zemetra R, Akhunov E, Friebe B, Poland J, Gill B S, Kianian S, Leonard J M. A whole-genome, radiation hybrid mapping resource of hexaploid wheat. Plant J, 2016, 86: 195–207
[30] 张学勇, 马琳, 郑军. 作物驯化和品种改良所选择的关键基因及其特点. 作物学报, 2017, 43: 157–170
Zhang X Y, Ma L, Zheng J. Characteristics of genes selected by domestication and intensive breeding in crop plants. Acta Agron Sin, 2017, 43: 171–178 (in Chinese with English abstract)
[31] Cuadrado Á, Golczyk H, Jouve N. A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential use and possible target structures detected. Chrom Res, 2009, 17: 755–762
[32] Cuadrado Á, Jouve N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma, 2010, 119: 495–503
[33] Matera A G, Ward D C. Oligonucleotide probes for the analysis of specific repetitive DNA sequences by fluorescence in situ hybridization. Hum Mol Genet, 1992, 1: 535–539
[34] Moodie S L, Thornton J M. A study into the effects of protein binding on nucleotide conformation. Nucl Acids Res, 1993, 21: 1369–1380
[35] Cuadrado A, Cardoso M, Jouve N. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res, 2008, 120: 210–219
[36] Beliveau B J, Joyce E F, Apostolopoulos N, Yilmaz F, Fonseka C Y, McCole R B, Chang Y, Li J B, Senaratne T N, Williams B R, Rouillard J M, Wu C T. Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes. Proc Natl Acad Sci USA, 2012, 109: 21301-21306
[37] Miks-Krajnik M, Babuchowski A.16S rRNA-targeted oligonucleotide probes for direct detection of Propionibacterium freudenreichii in presence of Lactococcus lactis with multicolour fluorescence in situ hybridization. Lett Appl Microbiol, 2014, 59: 320–327
[38] 王艳芝.百萨偃麦草染色体小片段易位的诱致、鉴定与基因定位分析. 南京农业大学硕士学位论文, 江苏南京, 2013
Wang Y Z. Development and Characterization of Small Segment Translocations of Thinopyrum bessarabicum and Cytological Mapping of Interest Genes. MSThesis of Nanjing Agricultural University, Nanjing, China. 2013 (in Chinese with English abstract)
[39] Tang Z X, Yang Z J, Fu S L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. JAppl Genet, 2014, 55: 313–318
[40] Han Y H, Zhang T, Thammapichai P, Weng Y Q, Jiang J M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics, 2015, 200: 771–779
[41] Fu S L, Chen L, Wang Y Y, Li M, Yang Z J, Qiu L, Yan B J, Ren Z L, Tang Z X. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep, 2015, 5: 10552
[42] Tang S Y, Qiu L, Xiao Z Q, Fu S L, Tang Z X. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes, 2016, 7: 118
[43] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017, 60: 93–103
[44] Zhu M Q, Du P, Zhuang L F, Chu C G, Zhao H, Qi Z J. A simple and efficient non-denaturing FISH method for maize chromosome differentiation using single-strand oligonucleotide probes. Genome. 2017, 60: 657–664
[45] 刘振乾. 荆州黑麦染色体变异体的诱致与鉴定.南京农业大学硕士学位论文,江苏南京, 2012
Liu Z Q. Development and Identification of Chromosome Variations of Secale cereale cv. Jingzhouheimai. MSThesis of Nanjing Agricultural University, Nanjing, China, 2012 (in Chinese with English abstract)
[46] Dolezel J, Cihalikova J, Lucretti S. A high yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba. Planta, 1992,188:93–98
[47] Dolezel J, Cihalikova J, Weiserova J, Lucretti S. Cell cycle synchronization in plant root meristems. Methods Cell Sci, 1999, 21: 95–107
[48] Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49: 1057–1068
[49] Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberration in wheat (Triticum aestivum). Genome, 1991, 34: 830–839
[50] Chen P D, Qi L L, Zhou B, Zhang S Z, and Liu D J. Development and molecular cytogenetic analysis of wheat–H. villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125–1128
[51] Qi Z J, Chen P D, Liu D J, Li Q Q. A new secondary reciprocal translocation discovered in Chinese wheat. Euphytica, 2004, 137: 333–338
[52] 庄丽芳, 亓增军, 孙玲, 李爱霞, 陈华锋, 王从磊, 达瓦顿珠, 冯祎高, 裴自友. 衍生于“矮孟牛Ⅴ”与92R137的小麦新品系南农1258的系统鉴定. 麦类作物学报, 2008, 28: 387–392
Zhuang L F, Qi Z J, Sun L, Li A X, Chen H F, Wang C L, Dawadondup, Feng Y G, Pei Z Y. Identification of a new wheat line Nannong 1258 derived from wheat germplasm Aimengniu V and 92R137. J Triticeae Crops, 2008, 28: 387–392 (in Chinese with English abstract)

[1] 刘畅,李仕金,王轲,叶兴国,林志珊. 簇毛麦6VS特异转录序列P21461P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用[J]. 作物学报, 2017, 43(07): 983-992.
[2] 龚志云, 石国新, 刘秀秀, 裔传灯, 于恒秀. 水稻非整倍体无性繁殖过程中的遗传稳定性[J]. 作物学报, 2011, 37(09): 1505-1510.
[3] 郑思乡;张福泉;李宗道;晏春耕;崔国贤;鄢明芳. 不同倍性苎麻的细胞学观察[J]. 作物学报, 2000, 26(03): 347-351.
[4] 余建章;Reid G.Palmer. 大豆的一个新三体[J]. 作物学报, 1989, 15(04): 397-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!