作物学报 ›› 2017, Vol. 43 ›› Issue (07): 983-992.doi: 10.3724/SP.J.1006.2017.00983
刘畅,李仕金,王轲,叶兴国,林志珊*
LIU Chang,LI Shi-Jin,WANG Ke,YE Xing-Guo,LIN Zhi-Shan*
摘要:
簇毛麦6V#2S和6V#4S染色体臂分别携带抗白粉病基因Pm21和PmV,在与小麦的杂种后代中,抗病基因与外源染色体臂共分离。开发鉴定2条外源染色体臂间多态性的序列,尤其是迄今遗传信息相对缺乏的6V#4S染色体臂的序列,对于其在遗传与育种上的应用具有重要意义。本研究以携带6V#4S?6DL染色体的小麦易位系Pm97033及感病小麦亲本宛7107接种白粉菌的叶片转录组数据为资源,通过差异基因筛选、共线性分析、簇毛麦基因组扩增及测序验证的方法,鉴定出来自6V#4S的表达序列P21461和P33259,其中基于P21461序列设计的引物P461-5在簇毛麦6V#2S和6V#4S染色体臂的扩增产物具有30 bp的InDel和4 nt的多态性。用该引物转化的标记P461-5a可以鉴定抗白粉病小麦品种和高代品系所含的外源染色体,显示其在簇毛麦抗源鉴别和小麦抗病育种辅助选择中潜在的应用价值。根据P33259开发的标记P259-1可以对含有6V#4S染色体臂的材料进行特异扩增,但对6V#2S?6AL易位染色体没有扩增产物,因此P259-1可作为6V#4S?6DL易位染色体的特异分子标记。qRT-PCR分析结果显示,P21461的表达不受白粉菌诱导,而P33259在接菌后12 h和24 h的转录水平比接菌前提高约2倍,推测其可能参与Pm97033与白粉菌的早期互作。
[1] De Pace C, Qualset C O. Mating system and genetic differentiation in Dasypyrum villosum (Poaceae) in Italy. Plant Syst Evol, 1995, 197: 123–147 [2] Frederiksen S. Taxonomic studies in Dasypyrum (Poaceae). Nord J Bot, 1991, 11: 135–142 [3] Gradzielewska A. The genus Dasypyrum—part 2. Dasypyrum villosum—a wild species used in wheat improvement. Euphytica, 2006, 152: 441–454 [4] Sears E R. Addition of the genome of Haynaldia villosa to Triticum aestivum. Am J Bot, 1953, 40: 168–174 [5] Liu C, Liu W, Wilson J, Friebe B, Gill B S. Development of a set of compensating Triticum aestivum – Dasypyrum villosum robertsonian translocation lines. Genome, 2011, 54: 836–844 [6] Liu D J, Chen P D, Pei G Z, Wang Y L, Qiu B X, Wang S L. Transfer of Haynaldia villosa chromosomes into Triticum aestivum. In: Miller T E, Koebner R M D, eds. Proceeding of the 7th International Wheat Genetics Symposium. Cambridge, UK, 1988, pp355–361 [7] Qi L L, Wang S L, Chen P D, Liu D J, Gill B S. Identification and physical mapping of three Haynaldia villosa chromosome-6V deletion lines. Theor Appl Genet, 1998, 97: 1042–1046 [8] Lin Z S, Zhang Y L, Wang M J, Li J R, Wang K, Chen X, Xu Q F, Zhang X S, Ye X G. Isolation and molecular analysis of genes Stpk-V2 and Stpk-V3 homologous to powdery mildew resistance gene Stpk-V in a Dasypyrum villosum accession and its derivatives. J Appl Genet, 2013, 54: 417–426 [9] Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727–7732 [10]Zhang J C, Zheng H Y, Li Y W, Li H J, Liu X, Qin H J, Dong L L, Wang D W. Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat. Sci Rep, 2016, 6: 23805 [11] Li A L, Zhang R Z, Pan L, Tang L C, Zhao G Y, Zhu M Z, Chu J F, Sun X H, Wei B, Zhang X Q, Jia J Z, Mao L. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance. PLoS One, 2011, 6: e28810 [12] Erayman M, Turktas M, Akdogan G, Gurkok T, Inal B, Ishakoglu E, Ilhan E, Unver T. Transcriptome analysis of wheat inoculated with Fusarium graminearum. Front Plant Sci, 2015, 6: 867 [13]贾昌路, 张瑶, 朱玲, 张锐. 转录组测序技术在生物测序中的应用研究进展. 分子植物育种, 2015, 13: 2388–2394 Jia C L, Zhang Y, Zhu L, Zhang R. Application progress of transcriptome sequencing technology in biological sequencing. Mol Plant Breed, 2015, 13: 2388–2394 (in Chinese with English abstract) [14] Zhang H, Yang Y Z, Wang C Y, Liu M, Li H, Fu Y, Wang Y J, Nie Y B, Liu X L, Ji W Q. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC Genomics, 2014, 15: 898 [15] Zhang H, Hu W G, Hao J L, Lv S K, Wang C Y, Tong W, Wang Y J, Wang Y Z, Liu X L, Ji W Q. Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genomics, 2016, 17: 238 [16] Hao Y B, Wang T, Wang K, Wang X J, Fu Y P, Huang L L, Kang Z S. Transcriptome analysis provides insights into the mechanisms underlying wheat plant resistance to stripe rust at the adult plant stage. PLoS One, 2016, 11: e0150717 [17] Li Q Q, Niu Z B, Bao Y G, Tian Q J, Wang H G, Kong L R, Feng D S. Transcriptome analysis of genes related to resistance against powdery mildew in wheat-Thinopyrum alien addition disomic line germplasm SN6306. Gene, 2016, 590: 5–17 [18]陈孝, 徐惠君, 杜丽璞, 尚立民, 韩彬, 施爱农, 肖世和. 利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究. 中国农业科学, 1996, 29(5): 1–8 Chen X, Xu H J, Du L P, Shang L M, Han B, Shi A N, Xiao S H. Transfer of gene resistant to powdery mildew from H. villosa to common wheat by tissue culture. Sci Agric Sin, 1996, 29(5): 1–8 (in Chinese with English abstract) [19] Li H, Chen X, Xin Z Y, Ma Y Z, Xu H J, Chen X Y, Jia X. Development and identification of wheat–Haynaldia villosa T6DL?6VS chromosome translocation lines conferring resistance to powdery mildew. Plant Breed, 2005, 124: 203–205 [20] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. p 117 Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. p 117 (in Chinese) [21] 吴宏亚, 张伯桥, 汪尊杰, 程顺和. 优质弱筋抗白粉病小麦新品种扬麦22的选育及配套栽培技术. 江苏农业科学, 2013, 41: 109–112 Wu H Y, Zhang B Q, Wang Z J, Cheng S H. Breeding and cultivation techniques of a new high quality of weak gluten wheat varieties Yangmai 22 resistance to powdery mildew. Jiangsu Agric Sci, 2013, 41: 109–112 (in Chinese) [22] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat–Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125–1128 [23] 曾小莉, 黄耀跃, 王相权, 王仕林, 康建. 国审品种内麦836小麦栽培技术规程. 种子世界, 2015, (5): 51–52 Zeng X L, Huang Y Y, Wang X Q, Wang S L, Kang J. Cultivation techniques of wheat about state approved varieties of Neimai 836. Seed World, 2015, (5): 51–52 (in Chinese) [24] 马登玉. 扬麦18的特征及高产栽培技术. 农业科技通讯, 2012, (1): 68–69 Ma D Y. Characteristics and high yielding cultivation techniques of Yangmai 18. Bull Agric Sci Technol, 2012, (1): 68–69 (in Chinese) [25] 张云龙, 王美蛟, 张悦, 褚翠萍, 林志珊, 徐琼芳, 叶兴国, 陈孝,张宪省. 不同簇毛麦6VS染色体臂的白粉病抗性特异功能标记的开发及应用. 作物学报, 2012, 38: 1827?1832 Zhang Y L, Wang M J, Zhang Y, Chu C P, Lin Z S, Xu Q F, Ye X G, Chen X, Zhang X S. Development and application of functional markers specific to powdery mildew resistance on chromosome arm 6VS from different origins of Haynaldia villosa. Acta Agron Sin, 2012, 38: 1827?1832 (in Chinese with English abstract) [26] 陈艳玲, 孙凯. 小麦品种金禾9123高产稳产栽培管理措施. 中国种业, 2011, (5): 70–71 Chen Y L, Sun K. High and stable yield cultivation and management measures of wheat variety Jinhe 9123. China Seed Ind, 2011, (5): 70–71 (in Chinese) [27] Paolacci A R, Tanzarella O A, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol, 2009, 10: 11 [28] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods, 2001, 25: 402–408 [29] Bie T D, Zhao R H, Zhu S Y, Chen S L, Cen B, Zhang B Q, Gao D R . Jiang Z N, Chen T T, Wang L, Wu R L, He H G. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat. Mol Breed, 2015, 35: 1-8 [30] 李桂萍, 陈佩度, 张守忠, 赵和. 小麦–簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响. 植物遗传资源学报, 2011, 12: 744–749 Li G P, Chen P D, Zhang S Z, Zhao H. Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat. J Plant Genet Resour, 2011, 12: 744–749 (in Chinese with English abstract) |
[1] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[2] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[3] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[4] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[5] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[6] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[7] | 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081. |
[8] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[9] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[10] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[11] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[12] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[13] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[14] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[15] | 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323. |
|