欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 262-276.doi: 10.3724/SP.J.1006.2023.24024

• 耕作栽培·生理生化 • 上一篇    下一篇

马铃薯块茎末端糖化适应性、稳定性及薯条加工型品种(系)筛选

段惠敏1(), 王郁2, 程李香3, 撒刚3, 夏露露2, 张峰1,3,*()   

  1. 1甘肃农业大学农学院, 甘肃兰州 730070
    2甘肃农业大学生命科学技术学院, 甘肃兰州 730070
    3甘肃农业大学 / 省部共建干旱生境作物学国家重点实验室 / 甘肃省遗传改良与种质创新重点实验室, 甘肃兰州 730070
  • 收稿日期:2022-01-19 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-27
  • 通讯作者: 张峰
  • 作者简介:E-mail: 1273475789@qq.com
  • 基金资助:
    甘肃省科技重大专项计划项目(21ZD11NA002);甘肃省抗病优质高效系列专用马铃薯品种创新与示范推广(GNKJ-2020-1);甘肃省中央引导地方科技发展专项资金资助

Tuber sugar-end adaptability, stability, and screening of French fries processing varieties in potato

DUAN Hui-Min1(), WANG Yu2, CHENG Li-Xiang3, SA Gang3, XIA Lu-Lu2, ZHANG Feng1,3,*()   

  1. 1College of Agriculture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3State Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-01-19 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-27
  • Contact: ZHANG Feng
  • Supported by:
    Gansu Province Science and Technology Key Project(21ZD11NA002);Gansu Province Disease Resistance, Quality and Efficiency Special Potato Varieties Innovation and Demonstration Expansion Project(GNKJ-2020-1);Gansu Province Central Government Guides Local Science and Technology Development Special Fund Project

摘要:

油炸薯条需要具有明亮均匀的色泽, 马铃薯生育期内块茎基部或顶部发生的末端糖化会使油炸薯条呈现出褐色末端。分析块茎中与末端糖化相关的成分含量和色泽参数, 结合基因型和基因型与环境互作(genotype + genotype and environment interactions, GGE)模型筛选抗末端糖化薯条加工型品种, 为薯条加工型品种的选育和种植提供理论依据。选择综合农艺性状优良的8个品种(系)分别种植于2个不同生态类型区: 河西灌区(永昌)和高寒阴湿区(渭源)。收获后分别储藏于常温(20℃)、低温(4℃), 分别于15 d和60 d测定块茎基部与顶部的淀粉、果糖、葡萄糖、蔗糖和游离氨基酸含量。炸条后检测薯条基部和顶部色泽, 评价块茎糖化末端类型。分析试点、品种、储藏条件及其互作效应对块茎末端糖化的影响, 结合GGE模型分析参试品种(系)末端糖化的适应性和稳定性。结果表明, 永昌试点中有6个品种(系)块茎出现基部和顶部末端糖化现象, 其中5个基部糖化, 1个顶部糖化。渭源试点中, 9个品种(系)块茎出现基部和顶部末端糖化现象, 其中4个基部糖化, 5个顶部糖化。永昌试点品种(系)基部和顶部色差平均值低, 末端糖化程度较低。方差分析表明, 环境与互作效应是决定块茎顶部和基部末端糖化的首要因素, 而在互作效应中, 环境与基因型互作效应对末端糖化起决定作用。GGE模型表明, 块茎基部成分含量具有比顶部更高的适应性, 块茎蔗糖和游离氨基酸含量稳定性高于淀粉和还原糖。永昌试点适宜种植薯条加工型马铃薯, 渭源试点对末端糖化的鉴别力更精确, 常温储藏能更好鉴别块茎末端糖化, 材料H0940具有末端糖化抗性, 品种甘农薯7号是抗末端糖化的加工型品种。

关键词: 末端糖化, 块茎成分, 薯条色泽, GGE分析

Abstract:

French fries need to have a bright and uniform color in the process of potato processing. Potato tuber sugar-end would make the fried fries brown ends. Screening the French fries processing varieties with sugar-end resistance by analyzing component content and color parameters related to sugar-end in the tuber and combining the genotype + genotype and environment interactions (GGE) model would provide a theoretical basis for the selection and planting of French fries processing varieties. Eight varieties (lines) with excellent comprehensive agronomic traits were selected and planted in two different ecological areas of Hexi irrigation area (Yongchang) and Alpine humid area (Weiyuan). After harvest, the tubers were stored at room temperature (20℃) and low temperature (4℃), respectively. Then, the contents of starch, fructose, glucose, sucrose, and free amino acids at the basal and apical tubers were measured after 15 days and 60 days storage. The color of basal and apical ends of French fries was measured for evaluating tuber sugar-end type. Meanwhile, the effects of locations, varieties, storage conditions, and their interactions on tuber sugar-end were analyzed. Combining with the GGE model, the adaptability and stability of the tested varieties showed that six varieties had tuber sugar-end in Yongchang, among which five varieties were basal sugar-end and one variety was apical sugar-end. In Weiyuan, nine varieties had tuber sugar-end, among which four varieties were basal sugar-end and five varieties were apical sugar-end. The low color difference at the basal and apical ends of potato varieties indicated that the sugar-end degree was low in Yongchang location. The variance analysis indicated that the environment and interaction effects were the primary factors that determined tuber sugar-end. Among the interaction effects, the interaction between environment and genotype played a role in determining sugar-end. The GGE model revealed that the composition of basal ends was higher adaptability than the apical end of tubers. Moreover, the sucrose and free amino acids of tubers were higher stability than starch and reducing sugar in each location. The suitable location for planting fries processing potatoes was Yongchang, and more accurately discriminability location for the tuber sugar-end was Weiyuan. The sugar-end varieties can be better identified under room temperature storage. In conclusion, H0940 was a material with sugar-end resistance and Gannongshu 7 was a processing variety with sugar-end resistance.

Key words: sugar-end, tuber components, French fries color, GGE analysis

表1

各参试品种(系)系谱及材料来源"

品种(系)
Variety (Line)
系谱
Pedigree
材料来源
Material source
Shepody Bake-King × F58050 Falkton Agricultural Experimental Station, Canada
荷混18 Hehun 18 Nena × Dunja Saatzucht Johs, Germany
H0940 AR 00-9417 × 0730-185 甘肃农业大学 Gansu Agricultural University, China
H0942 Melody × 0730-185 甘肃农业大学 Gansu Agricultural University, China
H0951 Russet Burbank × 0730-185 甘肃农业大学 Gansu Agricultural University, China
H0953 Russet Burbank × 0730-185 甘肃农业大学 Gansu Agricultural University, China
甘农薯7号 Gannongshu 7 大西洋×陇薯7号 Atlantic × Longshu 7 甘肃农业大学 Gansu Agricultural University, China
0730-217 大西洋×陇薯7号 Atlantic × Longshu 7 甘肃农业大学 Gansu Agricultural University, China

表2

马铃薯品种(系)田间农艺性状"

品种(系)
Variety (line)
块茎长
Length of tubers (cm)
块茎宽
Width of tubers (cm)
块茎长宽比
Length-width ration
商品率
Commercial
rate (%)
干物质含量
Dry matter content (%)
薯肉颜色
Flesh color
永昌Yongchang
Shepody 9.12 ±0.94 BC 5.42±0.11 C 1.68±0.14 A 87.56±0.12 B 24.33±0.12 C 白White
荷混18 Hehun 18 7.95±0.65 C 6.45±0.08 B 1.23±0.07 B 88.28±0.15 A 28.15±0.10 A 黄Yellow
H0940 7.97±1.28 C 4.93±0.21 D 1.60±0.21 AB 84.47±0.17 C 22.67±0.19 D 黄Yellow
H0942 8.97±0.85 BC 6.30±0.10 B 1.42±0.12 AB 80.73±0.09 F 22.33±0.10 D 黄Yellow
H0951 9.92±0.91 ABC 5.83±0.13 C 1.70±0.13 A 80.23±0.14 F 20.33±0.17 E 黄Yellow
H0953 12.76±0.85 A 7.51±0.07 A 1.70±0.08 A 83.44±0.08 D 18.00±0.08 F 白White
甘农薯7号 Gannongshu 7 11.80±0.79 AB 7.60±0.10 A 1.55±0.11 AB 82.67±0.10 E 25.43±0.07 B 白White
0730-217 11.13±0.82 AB 7.31±0.11 A 1.52±0.12 AB 88.59±0.12 A 22.33±0.08 D 白White
渭源Weiyuan
Shepody 10.67±1.06 AB 6.33±0.13 B 1.68±0.14 AB 88.71±0.14 A 21.00±0.15 D 白White
荷混18 Hehun 18 11.38±0.67 A 5.68±0.09 C 2.00±0.07 A 85.73±0.12 F 26.48±0.07 AB 黄Yellow
H0940 10.53±1.60 AB 6.53±0.20 B 1.60±0.18 B 86.27±0.19 E 20.33±0.21 E 黄Yellow
H0942 9.23±0.87 AB 6.48±0.11 B 1.42±0.09 BC 88.49±0.07 A 23.67±0.12 C 黄Yellow
H0951 11.25±1.01 A 6.60±0.12 B 1.70±0.11 AB 88.02±0.15 B 18.67±0.14 F 黄Yellow
H0953 7.94±0.78 B 7.33±0.09 A 1.08±0.12 C 85.49±0.08 F 18.00±0.12 F 白White
甘农薯7号 Gannongshu 7 10.27±0.71 AB 6.70±0.09 B 1.53±0.10 B 87.00±0.07 D 25.33±0.10 B 白White
0730-217 9.03±0.69 AB 5.93±0.09 C 1.52±0.08 B 87.51±0.07 C 27.00±0.06 A 白White

图1

两试点各品种(系)马铃薯块茎基部与顶部淀粉含量 不同大写字母表示品种(系)间差异显著, 不同小写字母表示品种(系)内块茎部位在不同种植和储藏条件下差异显著(P ≤ 0.05)。"

图2

两试点不同品种(系)马铃薯块茎基部与顶部果糖含量 不同大写字母表示品种(系)间差异显著, 不同小写字母表示品种(系)内块茎部位在不同种植和储藏条件下差异显著(P ≤ 0.05)。"

图3

两试点不同品种(系)马铃薯块茎基部与顶部葡萄糖含量 不同大写字母表示品种(系)间差异显著, 不同小写字母表示品种(系)内块茎部位在不同种植和储藏条件下差异显著(P ≤ 0.05)。"

图4

两试点不同品种(系)马铃薯块茎基部与顶部蔗糖含量 不同大写字母表示品种(系)间差异显著, 不同小写字母表示品种(系)内块茎部位在不同种植和储藏条件下差异显著(P ≤ 0.05)。"

图5

两试点不同品种(系)马铃薯块茎基部与顶部游离氨基酸含量 不同大写字母表示品种(系)间差异显著, 不同小写字母表示品种(系)内块茎部位在不同种植和储藏条件下差异显著(P ≤ 0.05)。"

图6

两试点不同品种(系)马铃薯经储藏炸后基部和顶部色泽差异 不同大写字母表示品种(系)间差异显著, 不同小写字母表示品种(系)在不同种植和储藏条件下差异显著(P ≤ 0.05)。"

图7

马铃薯品种(系)炸后色泽"

表3

炸后马铃薯色泽亨特指数与块茎成分的相关性分析"

亨特指数Hunter
value
样本量
Sample
size
果糖
Fructose
葡萄糖
Glucose
蔗糖
Sucrose content
游离氨基酸
Free amino acids
相关性
Pearson
correlation
P-value 相关性 Pearson
correlation
P-value 相关性
Pearson
correlation
P-value 相关性
Pearson
correlation
P-value
L* 288 0.115* 0.025 0.073 0.108 -0.099* 0.047 0.013 0.412
a* 288 -0.086 0.074 -0.011 0.425 -0.123* 0.019 -0.008 0.446
b* 288 -0.014 0.405 0.127* 0.015 -0.254** 0.000 0.039 0.253
ΔE 144 -0.236** 0.002 -0.029 0.364 -0.152* 0.034 0.014 0.435

表4

马铃薯块茎成分方差分析"

性状
Trait
变异来源
Source of variations
自由度 DF 平方和
Sum of square
均方
Mean squares
F检验
F-test
显著性 Significance
基部淀粉
Starch of basal tubers
试点 Location (L) 1 15.987 15.987 5.748 <0.050
基因型 Genotype (G) 7 363.493 51.928 18.670 <0.001
储藏 Storage (S) 2 206.145 103.072 37.060 <0.001
试点×基因型L × G 7 478.585 68.369 24.582 <0.001
试点×储藏 L × S 2 14.071 7.035 2.530 0.085
基因型×储藏 G × S 14 643.946 45.996 16.538 <0.001
试点×基因型×储藏 L × G × S 14 422.502 30.179 10.851 <0.001
残差 Residual 96 267.001 2.781
总变异 Total 143 2411.730
顶部淀粉
Starch of apical tubers
试点 Location 1 106.468 106.468 30.513 <0.001
基因型 Genotype 7 200.798 28.685 8.221 <0.001
储藏 Storage 2 379.414 189.707 54.369 <0.001
试点×基因型 L × G 7 205.039 29.291 8.395 <0.001
试点×储藏 L × S 2 0.324 0.162 0.046 0.955
基因型×储藏 G × S 14 400.278 28.591 8.194 <0.001
试点×基因型×储藏 L × G × S 14 186.154 13.297 3.811 <0.001
残差 Residual 96 334.966 3.489
总变异 Total 143 1813.441
基部还原糖
Reducing sugar of basal tubers
试点 Location 1 2.780 2.780 0.890 0.348
性状
Trait
变异来源
Source of variations
自由度 DF 平方和
Sum of square
均方
Mean squares
F检验
F-test
显著性 Significance
基部还原糖
Reducing sugar of basal tubers
基因型 Genotype 7 297.750 42.540 13.630 <0.001
储藏 Storage 2 34.160 17.080 5.470 <0.01
试点×基因型 L × G 7 252.730 36.100 11.570 <0.001
试点×储藏 L × S 2 1.140 0.570 0.180 0.833
基因型×储藏 G × S 14 96.490 6.890 2.210 <0.05
试点×基因型×储藏 L × G × S 14 303.220 21.660 6.940 <0.001
残差 Residual 96 299.530 3.120
总变异 Total 143 1287.800
顶部还原糖
Reducing sugar of apical tubers
试点 Location 1 6.280 6.280 1.020 0.315
基因型 Genotype 7 222.700 31.810 5.160 <0.001
储藏 Storage 2 104.220 52.110 8.460 <0.001
试点×基因型 L × G 7 301.950 43.140 7.000 <0.001
试点×储藏 L × S 2 4.090 2.040 0.330 0.718
基因型×储藏 G × S 14 203.520 14.540 2.360 <0.010
试点×基因型×储藏 L × G × S 14 105.320 7.520 1.220 0.273
残差 Residual 96 591.410 6.160
总变异 Total 143 1539.490
基部蔗糖
Sucrose of basal tubers
试点 Location 1 0.643 0.643 2.012 0.159
基因型 Genotype 7 89.125 12.732 39.853 <0.001
储藏 Storage 2 8.391 4.196 13.133 <0.001
试点×基因型 L × G 7 61.058 8.723 27.302 <0.001
试点×储藏 L × S 2 0.393 0.196 0.615 0.543
基因型×储藏 G × S 14 31.441 2.246 7.030 <0.001
试点×基因型×储藏 L × G × S 14 53.875 3.848 12.045 <0.001
残差 Residual 96 30.670 0.319
总变异 Total 143 275.595
顶部蔗糖
Sucrose of apical tubers
试点 Location 1 30.223 30.223 132.163 <0.001
基因型 Genotype 7 91.383 13.055 57.089 <0.001
储藏 Storage 2 14.786 7.393 32.329 <0.001
试点×基因型 L × G 7 109.449 15.636 68.375 <0.001
试点×储藏 L × S 2 2.329 1.165 5.093 <0.010
基因型×储藏 G × S 14 78.798 5.628 24.613 <0.001
试点×基因型×储藏 L × G × S 14 56.282 4.020 17.580 <0.001
残差 Residual 96 21.953 0.229
总变异 Total 143 405.202
基部游离氨基酸
Free amino acids of basal tubers
试点 Location 1 0.001 0.001 0.840 0.362
基因型 Genotype 7 1.198 0.171 143.244 <0.001
储藏 Storage 2 0.013 0.007 5.542 <0.010
试点×基因型 L × G 7 1.159 0.166 138.640 <0.001
试点×储藏 L × S 2 0.035 0.017 14.528 <0.001
基因型×储藏 G × S 14 0.318 0.023 19.040 <0.001
试点×基因型×储藏 L × G × S 14 0.287 0.021 17.167 <0.001
残差 Residual 96 0.115 0.001
总变异 Total 143 3.126
顶部游离氨基酸
Free amino acid of
apical tubers
试点 Location 1 0.065 0.065 55.472 <0.001
基因型 Genotype 7 0.795 0.114 96.845 <0.001
储藏 Storage 2 0.084 0.042 35.839 <0.001
试点×基因型 L × G 7 0.713 0.102 86.897 <0.001
试点×储藏 L × S 2 0.006 0.003 2.709 0.072
基因型×储藏 G × S 14 0.689 0.049 41.970 <0.001
试点×基因型×储藏 L × G × S 14 0.170 0.012 10.378 <0.001
残差 Residual 96 0.113 0.001
总变异 Total 143 2.635

图8

马铃薯块茎各成分含量适应性GGE双标图分析 A: 淀粉; B: 还原糖; C: 蔗糖; D: 游离氨基酸。"

图9

马铃薯块茎各成分含量稳定性GGE双标图分析 A: 淀粉; B: 还原糖; C: 蔗糖; D: 游离氨基酸。"

[1] Djaman K, Irmak S, Koudahe K, Allen S. Irrigation management in potato (Solanum tuberosum L.) production: a review. Sustainability, 2021, 13: 1504.
doi: 10.3390/su13031504
[2] Wagg C, Hann S, Kupriyanovich Y, Li S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric Water Manage, 2021, 247: 106731.
doi: 10.1016/j.agwat.2020.106731
[3] Thompson A L, Love S L, Sowokinos J R, Thornton M K, Shock C C. Review of the sugar end disorder in potato (Solanum tuberosum L.). Am J Potato Res, 2008, 85: 375-386.
doi: 10.1007/s12230-008-9034-2
[4] Zommick D H, Knowles L O, Pavek M J, Knowles N R. In-season heat stress compromises postharvest quality and low-temperature sweetening resistance in potato (Solanum tuberosum L.). Planta, 2014, 239: 1243-1263.
doi: 10.1007/s00425-014-2048-8 pmid: 24615233
[5] Busse J S, Wiberley-Bradford A E, Bethke P C. Transient heat stress during tuber development alters post-harvest carbohydrate composition and decreases processing quality of chipping potatoes. J Sci Food Agric, 2019, 99: 2579-2588.
[6] Muleta H D, Aga M C. Role of nitrogen on potato production: a review. J Plant Sci, 2019, 7: 36-42.
[7] Naumann M, Koch M, Thiel H, Gransee A, Pawelzik E. The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Res, 2020, 63: 121-137.
doi: 10.1007/s11540-019-09430-3
[8] Kumar P, Pandey S, Singh S, Kumar D, Singh B, Singh S, Rawal S, Meena R. Influence of N and K rates on yield and quality of chipping variety Kufri Chipsona-3. Potato J, 2012, 39: 191-196.
[9] Gawish R A, Ali F A, Midan S A, Taha M A. CO2 evolution and chemical constituents of leaves and tubers of potato plants as influenced by organic compost and mineral N-fertilizers applied individually or in different combination rates along with seaweed extract. J Appl Sci Res, 2012, 8: 1993-2009.
[10] Sabba R P, Bussan A J, Michaelis B A, Hughes R, Drilias M J, Glynn M T. Effect of planting and vine-kill timing on sugars, specific gravity and skin set in processing potato cultivars. Am J Potato Res, 2007, 84: 205-215.
doi: 10.1007/BF02986270
[11] Rosen C, Sun N, Olsen N, Thornton M, Pavek M, Knowles L, Knowles N R. Impact of agronomic and storage practices on acrylamide in processed potatoes. Am J Potato Res, 2018, 95: 319-327.
doi: 10.1007/s12230-018-9659-8
[12] Grudzińska M, Boguszewska-Mańkowska D, Zarzyńska K. Drought stress during the growing season: changes in reducing sugars, starch content and respiration rate during storage of two potato cultivars differing in drought sensitivity. J Agron Crop Sci, 2021, 207: 12498.
[13] Wang Y, Bethke P C, Drilias M J, Schmitt W G, Bussan A J. A multi-year survey of stem-end chip defect in chipping potatoes (Solanum tuberosum L.). Am J Potato Res, 2015, 92: 79-90.
doi: 10.1007/s12230-014-9414-8
[14] 乔焕焕, 李红兵, 郑太波, 邓西平. 干旱与复水对马铃薯块茎膨大期碳氮转运的影响. 干旱地区农业研究, 2019, 37(4): 154-162.
Qiao H H, Li H B, Zheng T B, Deng X P. Effects of drought stress and rehydration on carbon and nitrogen translocation in potato tuber swelling stage. Agric Res Arid Areas, 2019, 37(4): 154-162. (in Chinese with English abstract)
[15] Rykaczewska K. The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res, 2015, 92: 339-349.
doi: 10.1007/s12230-015-9436-x
[16] Abbas H, Ranjan R S. Effect of soil moisture deficit on marketable yield and quality of potatoes. Can Biosyst Engin, 2015, 57: 25-37.
[17] Bandana, Sharma V, Kaushik S K, Singh B, Raigond P. Variation in biochemical parameters in different parts of potato tubers for processing purposes. J Food Sci Technol, 2016, 53: 2040-2046.
doi: 10.1007/s13197-016-2173-4 pmid: 27413232
[18] Sowokinos J R. Potato Biology and Biotechnology. Amsterdam: Elsevier Science BV, 2007. pp 501-523.
[19] 余斌. 引进马铃薯种质资源表型多样性分析及块茎品质的综合评价. 甘肃农业大学博士学位论文, 甘肃兰州, 2018.
Yu B. Genetic Diversity Analysis of Phenotypic Traits and Comprehensive Assessment of Tuber Quality in Introduced Potato Germplasm Resources. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2018. (in Chinese with English abstract)
[20] 赵艳群, 武奇伟, 任飞娥, 赵金瑞, 赵文忠. 马铃薯品种对早疫病、晚疫病和疮痂病的田间抗性评价. 中国马铃薯, 2021, 35(2): 164-169.
Zhao Y Q, Wu Q W, Ren F E, Zhao J R, Zhao W Z. Evaluation on field resistance of potato varieties to early blight, late blight and scab. Chin Potato J, 2021, 35(2): 164-169. (in Chinese with English abstract)
[21] 张永成, 田丰. 马铃薯试验研究方法. 北京: 中国农业科学技术出版社, 2007. pp 166-169.
Zhang Y C, Tian F. Potato Experimental Research Method. Beijing: China Agricultural Science and Technology Press, 2007. pp 166-169. (in Chinese)
[22] Ohara-Takada A, Matsuura-Endo C, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T. Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Biosci Biotechnol Biochem, 2005, 69: 1232-1238.
doi: 10.1271/bbb.69.1232
[23] Lee Y P, Takahashi T. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem, 1966, 14: 71-77.
doi: 10.1016/0003-2697(66)90057-1
[24] 刘娟, 梁延超, 余斌, 李成, 王玉萍, 程李香, 张峰. 马铃薯薯条色泽和质地特性及薯条加工型品系筛选. 中国农业科学, 2017, 50: 4247-4265.
Liu J, Liang Y C, Yu B, Li C, Wang Y P, Cheng L X, Zhang F. Screening for French fries processing potato lines according to colour qualities and texture properties. Sci Agric Sin, 2017, 50: 4247-4265. (in Chinese with English abstract)
[25] 叶夕苗, 程鑫, 安聪聪, 袁剑龙, 余斌, 文国宏, 李高峰, 程李香, 王玉萍, 张峰. 马铃薯产量组分的基因型与环境互作及稳定性. 作物学报, 2020, 46: 354-364.
doi: 10.3724/SP.J.1006.2020.94089
Ye X M, Cheng X, An C C, Yuan J L, Yu B, Wen G H, Li G F, Cheng L X, Wang Y P, Zhang F. Genotype × environment interaction and stability of yield components for potato lines. Acta Agron Sin, 2020, 46: 354-364. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94089
[26] Tajner-Czopek A, Kita A, Rytel E. Characteristics of French fries and potato chips in aspect of acrylamide content-methods of reducing the toxic compound content in ready potato snacks. Appl Sci, 2021, 11: 3943.
doi: 10.3390/app11093943
[27] 王郁, 程鑫, 叶夕苗, 程李香, 李高峰, 文国宏, 王玉萍, 张峰. 不同品系马铃薯块茎末端糖化差异分析. 中国粮油学报, 2020, 35(7): 22-27.
Wang Y, Cheng X, Ye X M, Cheng L X, Li G F, Wen G H, Wang Y P, Zhang F. Analysis of sugar-end differences of potato tubers in different lines. J Chin Cereals Oils Assoc, 2020, 35(7): 22-27. (in Chinese with English abstract)
[28] Herman D J, Knowles L O, Knowles N R. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.). Planta, 2017, 245: 563-582.
doi: 10.1007/s00425-016-2626-z pmid: 27904974
[29] Herman D J, Knowles L O, Knowles N R. Low oxygen storage modulates invertase activity to attenuate cold-induced sweetening and loss of process quality in potato (Solanum tuberosum L.). Posth Biol Technol, 2016, 121: 106-117.
doi: 10.1016/j.postharvbio.2016.07.017
[30] Liu X, Chen L, Shi W, Xu X, Li Z, Liu T, He Q, Xie C, Nie B, Song B. Comparative transcriptome reveals distinct starch- sugar interconversion patterns in potato genotypes contrasting for cold-induced sweetening capacity. Food Chem, 2021, 334: 127550.
doi: 10.1016/j.foodchem.2020.127550
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[7] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[10] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .