作物学报 ›› 2023, Vol. 49 ›› Issue (1): 262-276.doi: 10.3724/SP.J.1006.2023.24024
段惠敏1(), 王郁2, 程李香3, 撒刚3, 夏露露2, 张峰1,3,*()
DUAN Hui-Min1(), WANG Yu2, CHENG Li-Xiang3, SA Gang3, XIA Lu-Lu2, ZHANG Feng1,3,*()
摘要:
油炸薯条需要具有明亮均匀的色泽, 马铃薯生育期内块茎基部或顶部发生的末端糖化会使油炸薯条呈现出褐色末端。分析块茎中与末端糖化相关的成分含量和色泽参数, 结合基因型和基因型与环境互作(genotype + genotype and environment interactions, GGE)模型筛选抗末端糖化薯条加工型品种, 为薯条加工型品种的选育和种植提供理论依据。选择综合农艺性状优良的8个品种(系)分别种植于2个不同生态类型区: 河西灌区(永昌)和高寒阴湿区(渭源)。收获后分别储藏于常温(20℃)、低温(4℃), 分别于15 d和60 d测定块茎基部与顶部的淀粉、果糖、葡萄糖、蔗糖和游离氨基酸含量。炸条后检测薯条基部和顶部色泽, 评价块茎糖化末端类型。分析试点、品种、储藏条件及其互作效应对块茎末端糖化的影响, 结合GGE模型分析参试品种(系)末端糖化的适应性和稳定性。结果表明, 永昌试点中有6个品种(系)块茎出现基部和顶部末端糖化现象, 其中5个基部糖化, 1个顶部糖化。渭源试点中, 9个品种(系)块茎出现基部和顶部末端糖化现象, 其中4个基部糖化, 5个顶部糖化。永昌试点品种(系)基部和顶部色差平均值低, 末端糖化程度较低。方差分析表明, 环境与互作效应是决定块茎顶部和基部末端糖化的首要因素, 而在互作效应中, 环境与基因型互作效应对末端糖化起决定作用。GGE模型表明, 块茎基部成分含量具有比顶部更高的适应性, 块茎蔗糖和游离氨基酸含量稳定性高于淀粉和还原糖。永昌试点适宜种植薯条加工型马铃薯, 渭源试点对末端糖化的鉴别力更精确, 常温储藏能更好鉴别块茎末端糖化, 材料H0940具有末端糖化抗性, 品种甘农薯7号是抗末端糖化的加工型品种。
[1] |
Djaman K, Irmak S, Koudahe K, Allen S. Irrigation management in potato (Solanum tuberosum L.) production: a review. Sustainability, 2021, 13: 1504.
doi: 10.3390/su13031504 |
[2] |
Wagg C, Hann S, Kupriyanovich Y, Li S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric Water Manage, 2021, 247: 106731.
doi: 10.1016/j.agwat.2020.106731 |
[3] |
Thompson A L, Love S L, Sowokinos J R, Thornton M K, Shock C C. Review of the sugar end disorder in potato (Solanum tuberosum L.). Am J Potato Res, 2008, 85: 375-386.
doi: 10.1007/s12230-008-9034-2 |
[4] |
Zommick D H, Knowles L O, Pavek M J, Knowles N R. In-season heat stress compromises postharvest quality and low-temperature sweetening resistance in potato (Solanum tuberosum L.). Planta, 2014, 239: 1243-1263.
doi: 10.1007/s00425-014-2048-8 pmid: 24615233 |
[5] | Busse J S, Wiberley-Bradford A E, Bethke P C. Transient heat stress during tuber development alters post-harvest carbohydrate composition and decreases processing quality of chipping potatoes. J Sci Food Agric, 2019, 99: 2579-2588. |
[6] | Muleta H D, Aga M C. Role of nitrogen on potato production: a review. J Plant Sci, 2019, 7: 36-42. |
[7] |
Naumann M, Koch M, Thiel H, Gransee A, Pawelzik E. The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Res, 2020, 63: 121-137.
doi: 10.1007/s11540-019-09430-3 |
[8] | Kumar P, Pandey S, Singh S, Kumar D, Singh B, Singh S, Rawal S, Meena R. Influence of N and K rates on yield and quality of chipping variety Kufri Chipsona-3. Potato J, 2012, 39: 191-196. |
[9] | Gawish R A, Ali F A, Midan S A, Taha M A. CO2 evolution and chemical constituents of leaves and tubers of potato plants as influenced by organic compost and mineral N-fertilizers applied individually or in different combination rates along with seaweed extract. J Appl Sci Res, 2012, 8: 1993-2009. |
[10] |
Sabba R P, Bussan A J, Michaelis B A, Hughes R, Drilias M J, Glynn M T. Effect of planting and vine-kill timing on sugars, specific gravity and skin set in processing potato cultivars. Am J Potato Res, 2007, 84: 205-215.
doi: 10.1007/BF02986270 |
[11] |
Rosen C, Sun N, Olsen N, Thornton M, Pavek M, Knowles L, Knowles N R. Impact of agronomic and storage practices on acrylamide in processed potatoes. Am J Potato Res, 2018, 95: 319-327.
doi: 10.1007/s12230-018-9659-8 |
[12] | Grudzińska M, Boguszewska-Mańkowska D, Zarzyńska K. Drought stress during the growing season: changes in reducing sugars, starch content and respiration rate during storage of two potato cultivars differing in drought sensitivity. J Agron Crop Sci, 2021, 207: 12498. |
[13] |
Wang Y, Bethke P C, Drilias M J, Schmitt W G, Bussan A J. A multi-year survey of stem-end chip defect in chipping potatoes (Solanum tuberosum L.). Am J Potato Res, 2015, 92: 79-90.
doi: 10.1007/s12230-014-9414-8 |
[14] | 乔焕焕, 李红兵, 郑太波, 邓西平. 干旱与复水对马铃薯块茎膨大期碳氮转运的影响. 干旱地区农业研究, 2019, 37(4): 154-162. |
Qiao H H, Li H B, Zheng T B, Deng X P. Effects of drought stress and rehydration on carbon and nitrogen translocation in potato tuber swelling stage. Agric Res Arid Areas, 2019, 37(4): 154-162. (in Chinese with English abstract) | |
[15] |
Rykaczewska K. The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res, 2015, 92: 339-349.
doi: 10.1007/s12230-015-9436-x |
[16] | Abbas H, Ranjan R S. Effect of soil moisture deficit on marketable yield and quality of potatoes. Can Biosyst Engin, 2015, 57: 25-37. |
[17] |
Bandana, Sharma V, Kaushik S K, Singh B, Raigond P. Variation in biochemical parameters in different parts of potato tubers for processing purposes. J Food Sci Technol, 2016, 53: 2040-2046.
doi: 10.1007/s13197-016-2173-4 pmid: 27413232 |
[18] | Sowokinos J R. Potato Biology and Biotechnology. Amsterdam: Elsevier Science BV, 2007. pp 501-523. |
[19] | 余斌. 引进马铃薯种质资源表型多样性分析及块茎品质的综合评价. 甘肃农业大学博士学位论文, 甘肃兰州, 2018. |
Yu B. Genetic Diversity Analysis of Phenotypic Traits and Comprehensive Assessment of Tuber Quality in Introduced Potato Germplasm Resources. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2018. (in Chinese with English abstract) | |
[20] | 赵艳群, 武奇伟, 任飞娥, 赵金瑞, 赵文忠. 马铃薯品种对早疫病、晚疫病和疮痂病的田间抗性评价. 中国马铃薯, 2021, 35(2): 164-169. |
Zhao Y Q, Wu Q W, Ren F E, Zhao J R, Zhao W Z. Evaluation on field resistance of potato varieties to early blight, late blight and scab. Chin Potato J, 2021, 35(2): 164-169. (in Chinese with English abstract) | |
[21] | 张永成, 田丰. 马铃薯试验研究方法. 北京: 中国农业科学技术出版社, 2007. pp 166-169. |
Zhang Y C, Tian F. Potato Experimental Research Method. Beijing: China Agricultural Science and Technology Press, 2007. pp 166-169. (in Chinese) | |
[22] |
Ohara-Takada A, Matsuura-Endo C, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T. Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Biosci Biotechnol Biochem, 2005, 69: 1232-1238.
doi: 10.1271/bbb.69.1232 |
[23] |
Lee Y P, Takahashi T. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem, 1966, 14: 71-77.
doi: 10.1016/0003-2697(66)90057-1 |
[24] | 刘娟, 梁延超, 余斌, 李成, 王玉萍, 程李香, 张峰. 马铃薯薯条色泽和质地特性及薯条加工型品系筛选. 中国农业科学, 2017, 50: 4247-4265. |
Liu J, Liang Y C, Yu B, Li C, Wang Y P, Cheng L X, Zhang F. Screening for French fries processing potato lines according to colour qualities and texture properties. Sci Agric Sin, 2017, 50: 4247-4265. (in Chinese with English abstract) | |
[25] |
叶夕苗, 程鑫, 安聪聪, 袁剑龙, 余斌, 文国宏, 李高峰, 程李香, 王玉萍, 张峰. 马铃薯产量组分的基因型与环境互作及稳定性. 作物学报, 2020, 46: 354-364.
doi: 10.3724/SP.J.1006.2020.94089 |
Ye X M, Cheng X, An C C, Yuan J L, Yu B, Wen G H, Li G F, Cheng L X, Wang Y P, Zhang F. Genotype × environment interaction and stability of yield components for potato lines. Acta Agron Sin, 2020, 46: 354-364. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94089 |
|
[26] |
Tajner-Czopek A, Kita A, Rytel E. Characteristics of French fries and potato chips in aspect of acrylamide content-methods of reducing the toxic compound content in ready potato snacks. Appl Sci, 2021, 11: 3943.
doi: 10.3390/app11093943 |
[27] | 王郁, 程鑫, 叶夕苗, 程李香, 李高峰, 文国宏, 王玉萍, 张峰. 不同品系马铃薯块茎末端糖化差异分析. 中国粮油学报, 2020, 35(7): 22-27. |
Wang Y, Cheng X, Ye X M, Cheng L X, Li G F, Wen G H, Wang Y P, Zhang F. Analysis of sugar-end differences of potato tubers in different lines. J Chin Cereals Oils Assoc, 2020, 35(7): 22-27. (in Chinese with English abstract) | |
[28] |
Herman D J, Knowles L O, Knowles N R. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.). Planta, 2017, 245: 563-582.
doi: 10.1007/s00425-016-2626-z pmid: 27904974 |
[29] |
Herman D J, Knowles L O, Knowles N R. Low oxygen storage modulates invertase activity to attenuate cold-induced sweetening and loss of process quality in potato (Solanum tuberosum L.). Posth Biol Technol, 2016, 121: 106-117.
doi: 10.1016/j.postharvbio.2016.07.017 |
[30] |
Liu X, Chen L, Shi W, Xu X, Li Z, Liu T, He Q, Xie C, Nie B, Song B. Comparative transcriptome reveals distinct starch- sugar interconversion patterns in potato genotypes contrasting for cold-induced sweetening capacity. Food Chem, 2021, 334: 127550.
doi: 10.1016/j.foodchem.2020.127550 |
No related articles found! |
|