欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 277-285.doi: 10.3724/SP.J.1006.2023.11116

• 研究简报 • 上一篇    下一篇

花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响

陈嘉军1(), 林祥2, 谷淑波1, 王威雁2, 张保军2, 朱俊科3, 王东2,*()   

  1. 1山东农业大学 / 作物生物学国家重点实验室, 山东泰安 271018
    2西北农林科技大学农学院, 陕西杨凌 712100
    3淄博禾丰种业科技股份有限公司, 山东临淄 255000
  • 收稿日期:2021-12-28 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-10
  • 通讯作者: 王东
  • 作者简介:E-mail: 1107289168@qq.com
  • 基金资助:
    山东省重点研发计划项目(LJNY202010);陕西省重点研发计划项目(2021ZDLNY01-05)

Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat

CHEN Jia-Jun1(), LIN Xiang2, GU Shu-Bo1, WANG Wei-Yan2, ZHANG Bao-Jun2, ZHU Jun-Ke3, WANG Dong2,*()   

  1. 1Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    2College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    3Zibo Hefeng Seed Technology Co., Ltd., Linzi 255000, Shandong, China
  • Received:2021-12-28 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-10
  • Contact: WANG Dong
  • Supported by:
    Key Research & Development Program Project of Shandong Province(LJNY202010);Key Research & Development Program Project of Shaanxi Province(2021ZDLNY01-05)

摘要:

小麦开花后叶面喷施氮肥能延缓衰老、提高产量, 但其对小麦氮素利用效率的影响鲜见报道。本研究以强筋冬小麦品种济麦229为试验材料, 采用两因素随机区组设计, 设置2个叶面喷施尿素的时期, 分别为开花后7 d (S)和21 d (T), 设置4个尿素溶液浓度(0、2%、6%和10%), 探索开花后叶面喷施尿素对冬小麦氮素吸收积累及籽粒产量和氮素利用效率的影响。结果表明, 小麦籽粒产量随喷施尿素溶液浓度的提高呈先增加后降低的趋势, 并在2%浓度水平下达到最高(比对照增产5.1%), 这主要得益于千粒重的增加(比对照提高3.3%)。开花后不同时间喷施2%浓度尿素溶液均促进了开花前营养器官贮藏氮素向籽粒中的再分配, 亦增加了开花后同化氮素输入籽粒量, 平均增幅分别为8.8%和21.1%; 单位面积籽粒氮积累量及氮素收获指数的增幅分别为10.9%和7.9%, 进而显著提高了籽粒含氮量、蛋白质含量及氮素利用效率。采用2%的尿素溶液叶面喷施, 将喷施时间由开花后7 d推迟至开花后21 d, 籽粒氮素积累量、籽粒产量和氮素利用效率的增幅更大。综上所述, 开花后叶面喷施2%的尿素溶液可促进强筋冬小麦花后氮素的吸收及营养器官临时贮存氮素向籽粒的再分配, 从而显著提高籽粒蛋白质含量和产量、增加籽粒产量、提高氮素利用效率。灌浆中后期喷施比灌浆前期喷施对籽粒蛋白质含量和产量、籽粒产量和氮素利用效率提高的幅度更大。

关键词: 冬小麦, 叶面喷肥, 尿素, 氮素利用效率, 籽粒产量

Abstract:

Foliar spraying of nitrogen fertilizer can delay senescence and increase yield of wheat post anthesis, but few studies of its effect on nitrogen use efficiency of wheat is known. In this study, Jimai 229, a strong gluten winter wheat variety, was used as experimental material, and a two-factor random block design was used to set two periods of urea spraying on leaves, namely 7 d (S) and 21 d (T) post anthesis. Setting 4 urea solution concentrations (0, 2%, 6%, and 10%) was to explore the effects of foliar urea spraying post anthesis on nitrogen absorption and accumulation, grain yield, and nitrogen use efficiency in winter wheat. The results showed that grain yield of wheat increased first and then decreased with the increase of spraying urea solution concentration, and reached the highest at 2% concentration (5.1% higher than the control), mainly due to the increase of 1000-grain weight (3.3% higher than the control). Spraying 2% urea solution at different times post anthesis promoted the redistribution of pre-flowering storage nitrogen to grains, and increased the amount of post-flowering assimilation nitrogen to grains by 8.8% and 21.1%, respectively. Grain nitrogen accumulation per unit area and nitrogen harvest index increased by 10.9% and 7.9%, respectively, resulting in significantly increasing the grain nitrogen content, protein content, and nitrogen use efficiency. When 2% urea solution was applied foliar spraying, and the spraying time was delayed from 7 days post anthesis to 21 days post anthesis, the increase of grain nitrogen accumulation, grain yield and nitrogen use efficiency was greater. In conclusion, spraying 2% urea solution on leaves post anthesis can promote the absorption of nitrogen and the redistribution of temporary storage nitrogen in vegetative organs to grains post anthesis, thus significantly improving grain protein content and yield, grain yield, and nitrogen use efficiency. Grain protein content and yield, grain yield and nitrogen use efficiency were increased more by spraying at the middle and late filling stages than at the early filling stage.

Key words: winter wheat, foliar spray, urea, nitrogen use efficiency, grain yield

表1

试验地0~20 cm土层播种前土壤养分含量"

年度
Year
有机质
Organic matter
(%)
全氮
Total nitrogen
(g kg-1)
碱解氮
Hydrolysable nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
2019-2020 1.79 1.15 98.82 41.67 133.19
2020-2021 2.07 1.13 93.25 37.05 120.92

图1

冬小麦开花后日平均气温和日降雨量"

表2

成熟期各器官氮素积累量"

年份
Year
处理
Treatment
积累量Accumulation (kg hm-2)
茎秆+叶鞘
Stem+sheath
穗轴+颖壳
Spike axis+glume

Leaf
籽粒
Grain
2019-2020 SN0 39.79 b 20.86 ab 12.88 b 204.83 d
SN2 35.63 c 12.39 d 11.85 c 226.13 b
SN6 40.41 a 19.13 bc 13.62 a 217.92 c
SN10 40.46 a 21.44 a 13.67 a 219.48 c
TN0 39.79 b 20.86 ab 12.88 b 204.83 d
TN2 34.53 c 10.25 e 10.83 d 232.16 a
TN6 40.42 a 18.87 c 13.61 a 217.91 c
TN10 40.49 a 21.32 a 13.68 a 220.01 c
2020-2021 SN0 42.04 a 30.08 c 16.53 b 261.46 d
SN2 36.41 b 23.15 d 14.02 c 281.73 b
SN6 42.59 a 31.31 b 14.18 c 268.92 c
SN10 43.39 a 31.66 b 16.63 b 272.92 c
TN0 42.04 a 30.08 c 16.53 b 261.46 d
TN2 35.91 b 19.45 e 12.31 d 292.72 a
TN6 42.37 a 31.51 b 14.26 c 269.26 c
TN10 43.18 a 32.78 a 17.71 a 271.09 c

表3

不同处理对开花后氮素同化与营养器官氮素再分配的影响"

年份
Year
处理
Treatment
氮素收获指数
Nitrogen harvest index
(%)
开花前营养器官贮藏氮素
Pre-anthesis reserves
开花后同化氮素
Post-anthesis assimilates
向籽粒转运量Translocated into grain
(kg hm-2)
转运率Transport rate (%) 对籽粒贡献率Contribution rate to grain (%) 输入籽粒量Allocation to grain
(kg hm-2)
对籽粒贡献率Contribution rate to grain (%)
2019-2020 SN0 73.59 c 170.51 cd 69.87 c 83.24 a 34.32 c 16.76 b
SN2 79.06 b 184.15 b 75.46 b 81.45 a 41.98 b 18.55 b
SN6 74.87 c 170.87 c 70.02 c 78.43 b 47.05 ab 21.57 a
SN10 74.39 c 168.46 d 69.03 c 76.76 b 51.02 a 23.24 a
TN0 73.59 c 170.51 cd 69.87 c 83.24 a 34.32 c 16.76 b
TN2 80.67 a 188.41 a 77.21 a 81.16 a 43.74 b 18.84 b
TN6 74.93 c 171.13 c 70.13 c 78.53 b 46.78 ab 21.47 a
TN10 74.45 c 168.53 d 69.06 c 76.61 b 51.47 a 23.39 a
2020-2021 SN0 74.68 c 216.58 c 70.96 c 82.84 a 44.88 c 17.16 c
SN2 79.29 b 231.65 b 75.89 b 82.22 ab 50.08 bc 17.78 bc
SN6 75.33 c 217.15 c 71.14 c 80.75 b 51.77 b 19.25 b
SN10 74.88 c 213.65 d 70.00 d 78.29 c 59.27 a 21.75 a
TN0 74.68 c 216.58 c 70.96 c 82.84 a 44.88 c 17.16 c
TN2 80.94 a 237.55 a 77.83 a 81.15 ab 55.16 ab 18.85 bc
TN6 75.34 c 217.10 c 71.13 c 80.63 b 52.16 b 19.37 b
TN10 74.33 c 211.55 d 69.31 d 78.06 c 59.53 a 21.96 a

图2

不同处理对各器官氮素转运量的影响 S: 开花后7 d; T: 开花后21 d; N0: 0浓度尿素溶液; N2: 2%浓度尿素溶液; N6: 6%浓度尿素溶液; N10: 10%浓度尿素溶液。误差线为标准差。柱顶端不同小写字母表示同一年度的不同处理之间差异显著(P < 0.05)。"

图3

各器官转运氮素对籽粒的贡献率 S: 开花后7 d; T: 开花后21 d; N0: 0浓度尿素溶液; N2: 2%浓度尿素溶液; N6: 6%浓度尿素溶液; N10: 10%浓度尿素溶液。误差线为标准差。柱顶端不同小写字母表示同一年度的不同处理之间差异显著(P < 0.05)。"

表4

不同处理对冬小麦籽粒产量及其构成因素的影响"

年份
Year
处理
Treatment
穗数
Spike number (×104 hm-2)
穗粒数
Grain number per spike
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
2019-2020 SN0 706.00 a 35.53 a 38.41 d 6655.05 d
SN2 720.00 a 35.44 a 39.35 b 6970.37 b
SN6 717.00 a 35.54 a 38.81 c 6805.15 c
SN10 716.00 a 35.63 a 38.71 c 6836.73 c
TN0 706.00 a 35.53 a 38.41 d 6655.05 d
TN2 714.00 a 35.44 a 40.06 a 7111.26 a
TN6 708.00 a 35.49 a 38.70 c 6809.63 c
TN10 718.00 a 35.42 a 38.79 c 6842.80 c
2020-2021 SN0 655.00 a 45.16 a 34.24 c 7725.19 c
SN2 658.00 a 45.25 a 34.90 b 7970.00 b
SN6 653.00 a 45.31 a 34.47 c 7825.09 c
SN10 650.00 a 45.03 a 34.37 c 7737.54 c
TN0 655.00 a 45.16 a 34.24 c 7725.56 c
TN2 658.00 a 45.29 a 35.79 a 8175.64 a
TN6 659.00 a 45.28 a 34.61 c 7850.00 c
TN10 660.00 a 44.83 a 34.44 c 7754.59 c

表5

不同处理对冬小麦籽粒含氮量、蛋白质含量及蛋白质产量的影响"

年份
Year
处理
Treatment
含氮量
Nitrogen content (%)
蛋白质含量
Protein content (%)
蛋白质产量
Protein production (kg hm-2)
2019-2020 SN0 2.77 c 15.82 c 1052.61 d
SN2 2.85 a 16.24 a 1131.94 b
SN6 2.81 b 16.02 b 1088.73 c
SN10 2.81 b 16.02 b 1095.65 c
TN0 2.77 c 15.82 c 1052.61 d
TN2 2.86 a 16.30 a 1159.06 a
TN6 2.79 b 15.93 b 1084.58 c
TN10 2.80 b 15.98 b 1093.34 c
年份
Year
处理
Treatment
含氮量
Nitrogen content (%)
蛋白质含量
Protein content (%)
蛋白质产量
Protein production (kg hm-2)
2020-2021 SN0 2.78 c 15.86 c 1224.85 d
SN2 2.87 a 16.35 a 1303.10 b
SN6 2.83 b 16.12 b 1261.19 c
SN10 2.84 b 16.16 b 1258.46 c
TN0 2.78 c 15.86 c 1224.91 d
TN2 2.87 a 16.38 a 1338.93 a
TN6 2.82 b 16.09 b 1263.33 c
TN10 2.82 b 16.10 b 1254.44 c

表6

不同处理对氮素利用效率、氮素吸收效率及氮肥偏生产力的影响"

年份
Year
处理
Treatment
氮素利用效率
NUtE (kg kg-1)
氮素吸收效率
NUpE (%)
氮肥偏生产力
PFPn (kg kg-1)
2019-2020 SN0 23.91 c 64.3 b 27.73 b
SN2 24.37 b 65.0 a 28.23 b
SN6 23.38 d 64.2 b 26.10 c
SN10 23.17 d 63.1 c 24.91 d
TN0 23.91 c 64.3 b 27.73 b
TN2 24.71 a 65.4 a 28.80 a
TN6 23.42 d 64.1 b 26.12 c
TN10 23.16 d 63.2 c 24.93 d
2020-2021 SN0 22.07 c 80.9 b 32.19 b
SN2 22.43 b 80.8 b 32.28 b
SN6 21.92 c 78.7 c 30.02 c
SN10 21.22 d 78.0 d 28.19 d
TN0 22.07 c 80.9 b 32.19 b
TN2 22.69 a 81.9 a 33.11 a
TN6 21.96 c 78.8 c 30.11 c
TN10 21.26 d 78.0 d 28.25 d
[1] 叶优良, 黄玉芳, 刘春生, 曲日涛, 宋海燕, 崔振岭. 氮素实时管理对冬小麦产量和氮素利用的影响. 作物学报, 2010, 36: 1578-1584.
doi: 10.3724/SP.J.1006.2010.01578
Ye Y L, Huang Y F, Liu C S, Qu R T, Song H Y, Cui Z L. Effect of in-season nitrogen management on grain yield and nitrogen use efficiency in wheat. Acta Agron Sin, 2010, 36: 1578-1584. (in Chinese with English abstract)
[2] 陈祥, 同延安, 亢欢虎, 俞建波, 王志辉, 杨江锋. 氮肥后移对冬小麦产量、氮肥利用率及氮素吸收的影响. 植物营养与肥料学报, 2008, 14: 450-455.
Chen X, Tong Y A, Kang H H, Yu J B, Wang Z H, Yang J F. Effect of postponing N application on the yield, apparent N recovery and N absorption of winter wheat. Plant Nutr Fert Sci, 2008, 14: 450-455. (in Chinese with English abstract)
[3] Tian Z W, Liu X X, Gu S L, Yu J H, Zhang L, Zhang W W, Jiang D, Cao W X, Dai T B. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat. J Integr Agric, 2018, 17: 52-65.
[4] 安学军, 邢志华, 李保佳, 安浩军, 张雪花, 何力剑, 徐海娜. 施氮方式对冬小麦品种保麦10号籽粒灌浆及产量的影响. 农业科技通讯, 2012, (6): 32-34.
An X J, Xing Z H, Li B J, An H J, Zhang X H, He L J, Xu H N. Effects of nitrogen application on grain filling and yield of winter wheat variety Baomai 10. Agric Technol Newsl, 2012, (6): 32-34. (in Chinese)
[5] 李红梅. 减量分期施氮对小麦产量和氮素利用效率的影响. 山东农业大学硕士学位论文, 山东泰安, 2018.
Li H M. Effect of Nitrogen Reduction and Application by Stages on Yield and Nitrogen Use Efficiency in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018. (in Chinese with English abstract)
[6] 徐国华, 沈其荣, 郑文娟, 唐胜华, 史瑞和. 小麦和玉米中后期大量元素叶面施用的生物效应. 土壤学报, 1999, 36: 454-462.
Xu G H, Shen Q R, Zheng W J, Tang S H, Shi R H. Biological responses of wheat and corn to foliar feeding of macronutrient fertilizers during their middle and latter growing periods. Acta Pedol Sin, 1999, 36: 454-462. (in Chinese with English abstract)
[7] 沈其荣, 徐国华. 小麦和玉米叶面标记尿素态15N的吸收和运输. 土壤学报, 2001, 38: 67-74.
Shen Q R, Xu G H. Foliar absorption and translocation of labelled urea 15N corn and wheat. Acta Pedol Sin, 2001, 38: 67-74. (in Chinese with English abstract)
[8] 左毅, 马冬云, 王晨阳, 朱云集, 刘骏, 郭天财. 花后叶面喷施氮肥和锌肥对小麦粒重及营养品质的影响. 麦类作物学报, 2013, 33: 123-128.
Zuo Y, Ma D Y, Wang C Y, Zhu Y J, Liu J, Guo T C. Effects of spraying nitrogen and zinc fertilizers after flowering on grain weight and nutritional quality of winter wheat. J Triticeae Crops, 2013, 33: 123-128. (in Chinese with English abstract)
[9] 董瑞, 吕厚波, 张保军, 张正茂, 陈魏涛, 刘芳亮. 叶面喷施氮肥对小麦SPAD值及产量的影响. 麦类作物学报, 2015, 35: 99-104.
Dong R, Lyu H B, Zhang B J, Zhang Z M, Chen W T, Liu F L. Effect of foliar application of nitrogen fertilizer on SPAD and yield of wheat. J Triticeae Crops, 2015, 35: 99-104. (in Chinese with English abstract)
[10] 王东, 苑进. 小麦玉米周年生产变量肥水一体化灌溉系统: 中国专利号: 201410499375.7. 2014-09-25.
Wang D, Yuan J. Annual Production of Wheat and Maize Fertilizer Water Integrated Irrigation System. Chinese Patent: 201410499375.7 [2014-09-25] (in Chinese)
[11] Johnson V A, Dreier A F, Grabouski P H. Yield and protein responses to nitrogen fertilizer of two winter wheat varieties differing in inherent protein content of their grain. Agron J, 1973, 65: 259-263.
doi: 10.2134/agronj1973.00021962006500020022x
[12] Tian Q L, He L H, Liao S, Li W, Deng F, Zhou W, Zhong X Y, Ren W J. Indica rice restorer lines with large sink potential exhibit improved nutrient transportation to the panicle,which enhances both yield and nitrogen-use efficiency. J Integr Agric, 2021, 20: 19.
[13] Silva A D, Jaenisch B R, Ciampitti I A, Lollato R P. Wheat nitrogen, phosphorus, potassium, and sulfur uptake dynamics under different management practices. Agron J, 2021, 113: 2752-2769.
doi: 10.1002/agj2.20637
[14] 杨磊, 夏炎, 韩自强, 王军, 宋贺, 董召荣, 车钊. 氮素调控措施对小麦植株氮素同化过程和产量的影响. 麦类作物学报, 2019, 39: 1195-1201.
Yang L, Xia Y, Han Z Q, Wang J, Song H, Dong Z R, Che Z. Effects of nitrogen regulation on nitrogen assimilation and yield of wheat. J Triticeae Crops, 2019, 39: 1195-1201. (in Chinese with English abstract)
[15] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74: 562-564.
doi: 10.2134/agronj1982.00021962007400030037x
[16] Kara B. Influence of late-season nitrogen application on grain yield, nitrogen use efficiency and protein content of wheat under Isparta ecological conditions. Turkish J Field Crops, 2010, 15: 1-6.
[17] Woolfolk C W, Raun W R, Johnson G V, Thomason W E, Mullen R W, Wynn K J, Freeman K W. Influence of late-season foliar nitrogen applications on yield and grain nitrogen in winter wheat. Agron J, 2002, 94: 429-434.
[18] Sarandón S J, Gianibelli M C. Effect of foliar urea spraying and nitrogen application at sowing upon dry matter and nitrogen distribution in wheat. Agronomie, 1990, 10: 183-189.
doi: 10.1051/agro:19900301
[19] Barbottin A, Lecomte C, Bouchard C, Jeuffroy M H. Nitrogen remobilization during grain filling in wheat: genotypic and environmental effects. Crop Sci, 2005, 45: 1141-1150.
doi: 10.2135/cropsci2003.0361
[20] 吕晓康. 花期不同形态氮素叶面喷施对冬小麦粒重和品质形成的调控效应及机理研究. 西北农林科技大学博士学位论文, 陕西咸阳, 2021.
Lyu X K. Effects and Mechanism of Foliar Spraying of Different Nitrogen Forms on Grain Weight and Quality Formation of Winter Wheat. PhD Dissertation of Northwest A&F University, Xianyang, Shaanxi, China, 2021 (in Chinese with English abstract).
[21] Gholami A, Akhlaghi S, Shahsavani S, Farrokhi N. Effects of urea foliar application on grain yield and quality of winter wheat. Commun Soil Sci Plant Anal, 2011, 42: 719-727.
doi: 10.1080/00103624.2011.550377
[22] Strong W M. Effect of late application of nitrogen on the yield and protein content of wheat. Aust J Exp Agric, 1982, 22: 54-61.
doi: 10.1071/EA9820054
[23] 郭伟, 李建伟. 花后外源碳氮供应对小麦加工品质的影响. 生态学杂志, 2016, 35: 11-16.
Guo W, Li J W. Effect of exogenous supply of nitrogen and carbon at post-anthesis of wheat on its end-use quality. Chin J Ecol, 2016, 35: 11-16. (in Chinese with English abstract)
[24] 曹宏鑫, 赵锁劳, 王世敬, 翟允褆. 基肥结合喷氮对冬小麦产量和品质及植株氮素状况的影响. 麦类作物学报, 2005, 25(5): 44-50.
Cao H X, Zhao S L, Wang S J, Zhai Y T. Effects of basal fertilizer combined with nitrogen injection on yield, quality and nitrogen status of winter wheat. J Triticeae Crops, 2005, 25(5): 44-50. (in Chinese with English abstract)
[25] Varga B, Svečnjak Z. The effect of late-season urea spraying on grain yield and quality of winter wheat cultivars under low and high basal nitrogen fertilization. Field Crops Res, 2006, 96: 125-132.
doi: 10.1016/j.fcr.2005.06.001
[26] 赵广才. 冬小麦籽粒发育中蛋白质和氨基酸含量的变化及喷氮效应的研究. 中国农业科学, 1989, 22(5): 10.
Zhao G C. Changes of protein and amino acid contents in winter wheat during grain development and effects of nitrogen spraying. Sci Agric Sin, 1989, 22(5): 10. (in Chinese with English abstract)
[27] Smith C J, Frency J R, Sherlock R R, Galbally I E. The fate of urea nitrogen applied in a foliar spray to wheat at heading. Fert Res, 1991, 28: 129-138.
doi: 10.1007/BF01049743
[28] Sarandón S J, Gianibelli M C. Effect of foliar sprayings of urea during or after anthesis on dry matter and nitrogen accumulation in the grain of two wheat cultivars of T. aestivum L. Fert Res, 1992, 31: 79-84.
doi: 10.1007/BF01064230
[29] Acreche M M, Slafer G A. Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. J Agric Sci, 2009, 147: 657-667.
doi: 10.1017/S0021859609990190
[30] Blandino M, Visioli G, Marando S, Marti A, Reyneri A. Impact of late-season N fertilization strategies on the gluten content and composition of high protein wheat grown under humid mediterranean conditions. J Cereal Sci, 2020, 94: 102995.
doi: 10.1016/j.jcs.2020.102995
[31] Rossmann A, Buchner P, Savill G P, Hawkesford M J, Scherf K A, Mühling K H. Foliar N application at anthesis alters grain protein composition and enhances baking quality in winter wheat only under a low N fertiliser regimen. Eur J Agron, 2019, 109: 125909.
doi: 10.1016/j.eja.2019.04.004
[32] Bly A G, Woodard H J. Foliar nitrogen application timing influence on grain yield and protein concentration of hard red winter and spring wheat. Agron J, 2003, 95: 335-338.
doi: 10.2134/agronj2003.3350
[1] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟, . 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[2] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[3] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[4] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[5] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[6] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析[J]. 作物学报, 2022, 48(12): 3144-3154.
[9] 宋杰, 任昊, 赵斌, 张吉旺, 任佰朝, 李亮, 王少祥, 黄金苓, 刘鹏. 施钾量对夏玉米维管组织结构与物质运输性能的影响[J]. 作物学报, 2022, 48(11): 2908-2919.
[10] 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响[J]. 作物学报, 2022, 48(11): 2920-2933.
[11] 杨恒山, 张雨珊, 葛选良, 李维敏, 郭子赫, 郭暖. 浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮素利用效率的影响[J]. 作物学报, 2022, 48(10): 2614-2624.
[12] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[13] 田昌, 靳拓, 周旋, 黄思怡, 王英姿, 徐泽, 彭建伟, 荣湘民, 谢桂先. 控释尿素对环洞庭湖区双季稻吸氮特征和产量的影响[J]. 作物学报, 2021, 47(4): 691-700.
[14] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[15] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[8] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[9] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[10] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .