欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 286-294.doi: 10.3724/SP.J.1006.2023.11118

• 研究简报 • 上一篇    

不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制

李秀(), 李刘龙, 李慕嵘, 尹立俊, 王小燕()   

  1. 长江大学农学院 / 湿地生态与农业利用教育部工程研究中心 / 涝渍灾害与湿地农业湖北省重点实验室, 湖北荆州 434025
  • 收稿日期:2021-12-31 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-16
  • 通讯作者: 王小燕
  • 作者简介:E-mail: m13797324054@163.com
  • 基金资助:
    国家自然科学基金项目(31871578);国家重点研发计划项目(2016YFD0300107);湿地生态与农业利用教育部工程研究中心资助

Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties

LI Xiu(), LI Liu-Long, LI Mu-Rong, YIN Li-Jun, WANG Xiao-Yan()   

  1. Agricultural College of Yangtze University / Hubei Collaborative Innovation Center for Grain Industry / Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Jingzhou 434025, Hubei, China
  • Received:2021-12-31 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-16
  • Contact: WANG Xiao-Yan
  • Supported by:
    National Natural Science Foundation of China(31871578);National Key Research and Development Program of China(2016YFD0300107);Engineering Research Center of the Ministry of Education for Wetland Ecology and Agricultural Utilization

摘要:

开花期至成熟期弱光是小麦生产中的环境胁迫之一, 本研究以江汉平原大面积推广品种郑麦9023、襄麦55、扬麦158和扶麦1228为试验材料, 研究弱光对小麦产量的影响及其适应机制。自开花期至成熟期进行遮光(AS), 并以不遮光处理为对照(CK), 测定了旗叶叶绿素含量、叶绿素a/b和叶片显微结构, 以及耐弱光指标—超氧化物歧化酶活性、干物质量和产量等指标。结果表明, 与对照相比, 花后遮光导致各品种小麦旗叶SPAD值、超氧化物歧化酶活性、叶绿素a含量及叶绿素b含量升高, 栅栏组织海绵组织厚度、叶片结构紧密度、干物质积累量和产量降低。不同小麦品种对花后弱光的响应表现不同, 襄麦55和扬麦158旗叶叶肉细胞形态和分布受影响小于郑麦9023和扶麦1228。与郑麦9023和扶麦1228相比, 襄麦55和扬麦158旗叶SPAD值、叶绿素a含量、叶绿素b含量和超氧化物歧化酶活性增幅较大, 叶绿素a/b降幅较大。遮光处理下襄麦55 (29%)和扬麦158 (34%)减产幅度小于郑麦9023 (38%)和扶麦1228 (47%), 表明襄麦55和扬麦158能够保持较高的产量, 对弱光环境具有较高的适应性。能够保持较高的旗叶生理活性是襄麦55和扬麦158在光照不足环境下生产力高于郑麦9023、扶麦1228的生理基础。

关键词: 小麦, 花后遮光, 叶片显微结构, 产量

Abstract:

Low light from flowering to maturity is one of the environmental stresses in wheat production. In this study, four commercial varieties, Zhengmai 9023, Xiangmai 55, Yangmai 158, and Fumai 1228 from Jianghan Plain, were used to investigate the influence of low light on wheat yield and the mechanisms of plants’ adaptation to low light. Shading (AS) treatments were started from flowering till maturity with normal light treatment as the control (CK). Traits monitored from flowering to maturity included chlorophyll contents, chlorophyll a/b and leaf microstructure in flag leaves, and low-light tolerance indicators of superoxide dismutase enzyme activity, dry matter, and yield. Results showed that compared with controls, shading postanthesis resulted in increasing SPAD value of flag leaf, superoxide dismutase (SOD) activity, chlorophyll a and chlorophyll b contents, decreased palisade tissue thickness of spongy tissue, tightness of leaf tissue structure, dry matter accumulation, and grain yield of all varieties. Varieties revealed different responses to low light treatment with the morphology and distribution of mesophyll cells of the flag leaf of Xiangmai 55 and Yangmai 158 being less affected than Zhengmai 9023 and Fumai 1228. Compared with Zhengmai 9023 and Fumai 1228, the SPAD value, chlorophyll a content, chlorophyll b contents, and superoxide dismutase activity of flag leaves of Xiangmai 55 and Yangmai 158 increased significantly, while the chlorophyll a/b decreased significantly. Shading treatment caused yield reductions were much less in Xiangmai 55 (29%) and Yangmai 158 (34%) than Zhengmai 9023 (38%) and Fumai 1228 (47%), indicating that Xiangmai 55 and Yangmai 158 were capable of maintaining high productivity resulted in a high level of adaptability to low-light environments. The ability to maintain a higher physiological activity of flag leaf was the major physiological mechnism for higher productivity of wheat under insufficient light conditions.

Key words: wheat, shading postanthesis, leaf microstructure, yield

表1

不同小麦品种关键物候期对应时间"

年度
Year
品种
Variety
播种日期
Sowing date
开花日期
Anthesis date
成熟日期
Maturity date
遮光时期
Shading period
2018-2019 ZM 9023 2018/10/31 2019/4/14 2019/5/19 2019/4/12-2019/5/20
FM 1228 2019/4/14 2019/5/19
YM 158 2019/4/12 2019/5/19
XM 55 2019/4/12 2019/5/21
2020-2021 ZM 9023 2020/10/28 2021/3/25 2021/5/13 2021/3/25-2021/5/15
FM 1228 2021/3/25 2021/5/13
YM 158 2021/3/25 2021/5/15
XM 55 2021/3/25 2021/5/15

图1

花后遮光处理下不同小麦品种SPAD值的变化 不同小写字母表示处理间差异显著(P < 0.05)。CK: 自然光照; AS: 花后遮光。品种名缩写同表1。"

表2

花后遮光对不同小麦品种旗叶光合色素含量及叶绿素a/b的影响"

品种
Variety
处理时间
Duress time
(d)
叶绿素a含量
Chlorophyll a content (mg g-1)
叶绿素b含量
Chlorophyll b content (mg g-1)
叶绿素a/b
Chlorophyll a/b
CK AS CK AS CK AS
ZM 9023 0 1.72±0.07 a 1.72±0.07 a 0.57±0.06 a 0.57±0.06 a 2.99±0.12 a 2.99±0.12 a
21 1.54±0.10 a 1.55±0.06 a 0.67±0.02 a 0.71±0.05 a 2.30±0.12 a 2.18±0.10 a
35 0.77±0.11 a 1.10±0.08 b 0.13±0.07 a 0.20±0.07 a 5.78±0.31 a 5.44±0.14 a
FM 1228 0 2.12±0.12 a 2.12±0.12 a 0.64±0.01 a 0.64±0.01 a 3.34±0.27 a 3.34±0.27 a
21 1.17±0.12 a 1.12±0.12 a 0.68±0.02 a 0.70±0.01 a 1.51±0.10 a 1.40±0.01 a
35 0.54±0.05 a 0.62±0.09 a 0.15±0.02 a 0.17±0.01 a 3.73±0.40 a 3.62±0.11 a
YM 158 0 2.10±0.08 a 2.10±0.08 a 0.69±0.02 a 0.69±0.02 a 3.05±0.41 a 3.05±0.41 a
21 1.60±0.09 a 1.81±0.07 b 0.75±0.01 a 0.97±0.01 b 2.01±0.11 a 1.76±0.03 b
35 0.62±0.13 a 1.20±0.13 b 0.14±0.06 a 0.30±0.04 b 4.49±0.39 a 3.95±0.13 b
XM 55 0 1.76±0.06 a 1.76±0.06 a 0.53±0.03 a 0.53±0.03 a 3.32±0.24 a 3.32±0.24 a
21 1.61±0.11 a 2.08±0.09 b 0.68±0.07 a 0.99±0.01 b 2.36±0.10 a 2.09±0.11 b
35 0.77±0.11 a 1.26±0.09 b 0.18±0.04 a 0.46±0.01 b 4.16±0.28 a 3.23±0.22 b

表3

花后遮光对不同小麦品种SOD活性的影响"

品种
Variety
处理时间
Duress time (d)
SOD活性 SOD activity (U g-1 FW min-1)
CK AS
ZM 9023 0 250.63±2.80 a 250.63±2.81 a
21 219.99±1.47 a 240.46±1.61 b
35 204.70±1.87 a 213.00±2.79 a
FM 1228 0 289.17±3.23 a 289.17±3.24 a
21 245.60±9.68 a 257.71±3.23 a
35 196.31±2.69 a 209.28±3.73 a
YM 158 0 276.07±2.93 a 276.07±2.94 a
21 250.45±1.08 a 285.96±2.93 a
35 204.20±2.91 a 261.12±3.88 b
XM 55 0 278.59±3.23 a 278.59±3.24 a
21 247.22±5.66 a 293.10±3.23 b
35 220.66±4.62 a 255.92±6.29 b

图2

花后遮光21 d不同小麦品种旗叶显微结构的变化 CK: 自然光照; AS: 花后遮光。品种名缩写同表1。"

表4

花后遮光21 d对不同小麦品种叶片组织厚度的影响"

品种
Variety
处理
Treatment
上表皮厚度
Upper
epidermis thickness
(μm)
下表皮厚度
Lower
epidermis thickness
(μm)
栅栏组织厚度
Palisade
tissue thickness
(μm)
海绵组织厚度
Sponge
tissue thickness
(μm)
叶片厚度
Leaf
thickness
(μm)
栅海比
Fence tissue sponge tissue ratio
叶片结构
紧实度
Tightness of the blade structure
叶片结构
疏密度
Blade structure dredging
density
ZM 9023 CK 13.37±0.58 a 12.26±0.78 a 50.32±2.90 a 40.69±7.47 a 165.86±6.68 a 1.24 a 0.30 a 0.25 a
AS 12.29±0.24 a 12.17±0.32 a 39.25±0.06 b 33.50±5.46 b 146.60±5.71 b 0.87 b 0.27 b 0.23 a
FM 1228 CK 12.96±0.94 a 11.14±0.12 a 59.18±3.36 a 42.58±7.80 a 157.23±4.11 a 1.39 a 0.40 a 0.29 a
AS 11.16±0.38 a 11.38±0.31 a 28.16±5.65 b 22.94±5.76 b 135.29±1.38 b 1.16 b 0.20 b 0.16 a
YM 158 CK 12.75±1.68 a 11.97±0.38 a 53.51±5.66 a 37.13±6.29 a 163.79±3.80 a 1.44 a 0.33 a 0.23 a
AS 10.90±1.32 a 9.31±0.43 a 40.46±3.86 b 28.46±1.88 b 154.34±2.41 b 1.32 a 0.24 b 0.18 a
XM 55 CK 13.90±0.98 a 10.99±0.59 a 51.97±2.59 a 37.76±2.07 a 151.50±3.54 a 1.38 a 0.34 a 0.25 a
AS 12.24±0.76 a 10.18±0.49 a 39.03±4.19 b 29.02±2.66 b 145.78±1.91 b 1.37 a 0.27 b 0.20 a

图3

花后遮光处理下不同小麦品种干物质积累量的变化 I: 开花期; II: 开花后21 d; III: 成熟期。不同小写字母表示处理间差异显著(P < 0.05)。CK: 自然光照; AS: 花后遮光。品种名缩写同表1。"

表5

花后遮光对不同小麦品种产量及其构成因素的影响"

年度
Year
品种
Variety
处理 Treatment 产量
Yield
(kg hm-2)
每公顷穗数
Number of ears
per hectare
(×104 hm-2)
穗粒数
Kernels per pike
千粒重
1000-grain weight
(g)
收获指数
Harvest
index
2018-2019 ZM 9023 CK 5525 a 447 a 39.9 a 36.83 a 0.43 a
AS 3119 b 444 a 39.7 a 24.23 b 0.32 b
FM 1228 CK 5808 a 423 a 40.2 a 38.12 a 0.43 a
AS 3009 b 421 a 39.4 a 24.03 b 0.29 b
YM 158 CK 5502 a 353 a 43.4 a 37.37 a 0.44 a
AS 3740 b 351 a 43.0 a 28.05 b 0.36 b
XM 55 CK 6417 a 412 a 46.5 a 41.08 a 0.43 a
AS 3999 b 414 a 44.8 a 29.43 b 0.35 b
2020-2021 ZM 9023 CK 3771 a 368 a 37.4 a 40.48 a 0.38 a
AS 2557 b 357 a 36.9 a 35.30 b 0.28 b
FM 1228 CK 4644 a 348 a 43.1 a 41.82 a 0.41 a
AS 2510 b 326 a 41.5 a 32.50 b 0.31 b
YM 158 CK 4078 a 326 a 40.9 a 46.14 a 0.40 a
AS 3008 b 340 a 40.8 a 38.16 b 0.34 b
XM 55 CK 3968 a 334 a 42.6 a 43.90 a 0.35 a
AS 2808 b 315 a 40.2 a 36.06 b 0.25 b
[1] 刘玉洁, 陈巧敏, 葛全胜, 戴君虎. 气候变化背景下1981-2010中国小麦物候变化时空分异. 中国科学: 地球科学, 2018, 48: 888-898.
Liu Y J, Chen Q M, Ge Q S, Dai J H. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010. Sci China: Earth Sci, 2018, 48: 888-898. (in Chinese with English abstract)
[2] 王斌, 顾蕴倩, 刘雪, 罗卫红, 戴剑锋, 张巍, 亓春杰. 中国冬小麦种植区光热资源及其配比的时空演变特征分析. 中国农业科学, 2012, 45: 228-238.
Wang B, Gu Y Q, Liu X, Luo W H, Dai J F, Zhang W, Qi C J. Analysis of the temporal and spatial changes of photo-thermal resources in winter wheat growing regions in China. Sci Agric Sin, 2012, 45: 228-238. (in Chinese with English abstract)
[3] 任魁. 长江中下游平原地区小麦生长的气候变化特点与发展方向. 南方农业, 2015, 9(12): 27.
Ren K. Characteristics of climate change and development direction of wheat growth in the plains of the middle and lower reaches of the Yangtze River. South China Agric, 2015, 9(12): 27. (in Chinese)
[4] 谭方颖, 赵晓凤, 郑昌玲, 宋迎波. 2021年春季气象条件对农业生产的影响. 中国农业气象, 2021, 42: 616-619.
Tan F Y, Zhao X F, Zheng C L, Song Y B. The influence of meteorological conditions on agricultural production in the spring of 2021. Chin J Agrometeorol, 2021, 42: 616-619. (in Chinese with English abstract)
[5] 朱萍, 杨世民, 马均, 李树杏, 陈宇. 遮光对杂交水稻组合生育后期光合特性和产量的影响. 作物学报, 2008, 34: 2003-2009.
doi: 10.3724/SP.J.1006.2008.02003
Zhu P, Yang S M, Ma J, Li S X, Chen Y. Effect of shading on the photosynthetic characteristics and yield at later growth stage of hybrid rice combination. Acta Agron Sin, 2008, 34: 2003-2009. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.02003
[6] 顾蕴倩, 刘雪, 张巍, 亓春杰, 汤开磊, 赵杨, 张岩, 李刚, 王斌, 赵春江, 罗卫红. 灌浆期弱光逆境对小麦生长和产量影响的模拟模型. 中国农业科学, 2013, 46: 898-908.
Gu Y Q, Liu X, Zhang W, Qi C J, Tang K L, Zhao Y, Zhang Y, Li G, Wang B, Zhao C J, Luo W H. The simulation model of the effects of low level of radiation at milk filling stage on wheat growth and yield. Sci Agric Sin, 2013, 46: 898-908. (in Chinese with English abstract)
[7] 王东, 于振文. 不同施氮量下子粒灌浆不同阶段遮光对小麦氮素积累和转移的影响. 植物营养与肥料学报, 2008, 15: 615-622.
Wang D, Yu Z W. Effects of shading at different filling stages on nitrogen accumulation and translocation in wheat at different nitrogen rates. Plant Nutr Fert Sci, 2008, 15: 615-622. (in Chinese with English abstract)
[8] 陈传永, 王荣焕, 赵久然, 徐田军, 王元东, 刘秀芝, 刘春阁, 裴志超, 成广雷, 陈国平. 不同生育时期遮光对玉米籽粒灌浆特性及产量的影响. 作物学报, 2014, 40: 1650-1657.
Chen C Y, Wang R H, Zhao J R, Xu T J, Wang Y D, Liu X Z, Liu C G, Pei Z C, Cheng G L, Chen G P. Effects of shading on grain-filling properties and yield of maize at different growth Stages. Acta Agron Sin, 2014, 40: 1650-1657. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01650
[9] Greenwald R, Bergin M H, Xu J, Cohan D, Hoogenboom G, Chameides W. The influence of aerosols on crop production: a study using the CERES crop model. Agric Syst, 2006, 89: 390-413.
doi: 10.1016/j.agsy.2005.10.004
[10] Zhang C J, Chu H J, Chen G X, Shi D W, Zuo M, Wang J, Lu C G, Wang P, Chen L. Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. J Plant Res, 2007, 120: 209-217.
doi: 10.1007/s10265-006-0038-z pmid: 17077941
[11] Burkey K O, Wells R. Response of soybean photosynthesis and chloroplast membrane function to canopy development and mutual shading. Plant Physiol, 1991, 97: 245-252.
doi: 10.1104/pp.97.1.245 pmid: 16668377
[12] Schöner S, Krause G H. Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta, 1990, 180: 383-389.
doi: 10.1007/BF00198790 pmid: 24202017
[13] 徐彩龙, 尹燕枰, 蔡瑞国, 王平, 李勇, 郭俊祥, 陈二影, 翟学旭, 刘铁宁, 王振林. 弱光条件下不同穗型小麦品种旗叶光合特性和抗氧化代谢. 作物学报, 2012, 38: 1295-1306.
Xu C L, Yin Y P, Cai R G, Wang P, Li Y, Guo J X, Chen E Y, Zhai X X, Liu T N, Wang Z L. Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to shading during grain filling in winter wheat cultivars with different spike types. Acta Agron Sin, 2012, 38: 1295-1306. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01295
[14] 张元燕, 季永华, 贾恒, 王爱霞, 张敏, 方炎明. 遮光处理对不同生育期小麦生物量分配和叶片叶绿素含量的影响. 植物资源与环境学报, 2009, 18(4): 39-45.
Zhang Y Y, Ji Y H, Jia H, Wang A X, Zhang M, Fang Y M. Effect of shading on biomass allocation and chlorophyll content in leaf of Triticum aestivum at different developmental stages. J Plant Resour Environ, 2009, 18(4): 39-45. (in Chinese with English abstract)
[15] 李琪, 王清, 王连喜, 胡正华, 吴东丽. 花后遮光渍水对南京冬小麦光合特性和产量的影响. 江苏农业学报, 2017, 33: 555-560.
Li Q, Wang Q, Wang L X, Hu Z H, Wu D L. Photosynthetic characteristics and yield of winter wheat in response to post-anthesis shading and waterlogging in Nanjing. Jiangsu J Agric Sci, 2017, 33: 555-560. (in Chinese with English abstract)
[16] 李常英, 张金凤, 丁美丽, 王裕. 遮光强度对小麦叶片光合特性及生理代谢特征的影响. 山西农业大学学报(自然科学版), 2019, 39(6): 1-7.
Li C Y, Zhang J F, Ding M L, Wang Y. Shading intensity impact the photosynthetic rate and physiological metabolism of wheat. J Shanxi Agric Univ(Nat Sci Edn), 2019, 39(6): 1-7. (in Chinese with English abstract)
[17] 党红凯, 李瑞奇, 李雁鸣, 李晓爽, 孟建. 冬小麦叶片显微结构和光合特性与产量的关系. 麦类作物学报, 2016, 36: 742-751.
Dang H K, Li R Q, Li Y M, Li X S, Meng J. Relationship among leaf micro-structure, photosynthetic characteristics and yield traits of winter wheat. J Triticeae Crops, 2016, 36: 742-751. (in Chinese with English abstract)
[18] Yang H, Dong B, Wang Y, Wang Y K, Qiao Y Z, Shi C H, Jin L L, Liu M Y. Photosynthetic base of reduced grain yield by shading stress during the early reproductive stage of two wheat cultivars. Sci Rep, 2020, 10: 14353.
doi: 10.1038/s41598-020-71268-4 pmid: 32873861
[19] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-15.
[20] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 167-169.
Li H S. Experimental Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 167-169 (in Chinnese).
[21] 张新梅, 董晓英, 沈仁芳. 水稻幼嫩根尖常规石蜡切片制作技术改良. 江苏农业科学, 2013, 41(12): 71-73.
Zhang X M, Dong X Y, Shen R F. Improving the technology of making paraffin section of young rice root tip. Jiangsu Agric Sci, 2013, 41(12): 71-73 (in Chinnese).
[22] 许岳飞, 金晶炜, 陈浩, 呼天明, 何学青, 周禾. 草坪植物耐弱光机理研究进展. 草地学报, 2011, 19: 1064-1069.
Xu Y F, Jin J W, Chen H, Hu T M, He X Q, Zhou H. Physiological mechanism of turfgrass shadow tolerance: a review. Acta Agrest Sin, 2011, 19: 1064-1069 (in Chinnese with English abstract).
[23] 郭翠花, 高志强, 苗果园. 花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响. 作物学报, 2010, 36: 673-679.
doi: 10.3724/SP.J.1006.2010.00673
Guo C H, Gao Z Q, Miao G Y. Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat. Acta Agron Sin, 2010, 36: 673-679. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00673
[24] Crookston P, Treharne K, Ludgord P, Ozbun J. Response of beans to shading. Crop Sci, 1975, 15: 412-416.
doi: 10.2135/cropsci1975.0011183X001500030039x
[25] 吴含玉, 张雅君, 张旺锋, 王克如, 李少昆, 姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制. 作物学报, 2019, 45: 248-255.
doi: 10.3724/SP.J.1006.2019.83042
Wu H Y, Zhang Y J, Zhang W F, Wang K R, Li S K, Jiang C D. Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field. Acta Agron Sin, 2019, 45: 248-255. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83042
[26] 欧俊梅, 王治斌, 周强, 陶军, 任勇, 何员江. 小麦开花及灌浆期叶片叶绿素含量与产量性状的相关分析. 安徽农业科学, 2017, 45(7): 42-43.
Ou J M, Wang Z B, Zhou Q, Tao J, Ren Y, He Y J. Correlation analysis between chlorophyll content of leaves and yield traits in wheat at flowering and grain filling stage. J Anhui Agric Sci, 2017, 45(7): 42-43. (in Chinese with English abstract)
[27] Cornah J E, Terry M J, Smith A G. Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci, 2003, 8: 224-230.
pmid: 12758040
[28] Zhu H F, Li X F, Zhai W, Liu Y, Gao Q Q, Liu J P, Ren L, Chen H Y, Zhu Y Y. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). PLoS One, 2017, 12: e0179305.
doi: 10.1371/journal.pone.0179305
[29] Meng Z J, Lu T, Zhang G X, Qi M F, Tang W, Li L L, Liu Y F, Li T L. Photosystem inhibition and protection in tomato leaves under low light. Sci Hortic, 2017, 217: 145-155.
doi: 10.1016/j.scienta.2017.01.039
[30] Chu H A, Nguyen A P, Debus R J. Site-directed photosystem II mutants with perturbed oxygen-evolving properties: 1. Instability or inefficient assembly of the manganese cluster in vivo. Biochemistry, 1994, 33: 6137-6149.
pmid: 8193127
[31] 田敏, 饶龙兵, 李纪元. 植物细胞中的活性氧及其生理作用. 植物生理学通讯, 2005, 41: 235-241.
Tian M, Rao L B, Li J Y. Reactive oxygen species (ROS) and its physiological functions in plant cells. Plant Physiol Commun, 2005, 41: 235-241. (in Chinese with English abstract)
[32] Ye B, Gressel J. Constitutive variation of ascorbate peroxidase activity during development parallels that of superoxide dismutase and glutathione reductase in paraquat-resistant Conyza. Plant Sci, 1994, 102: 147-151.
doi: 10.1016/0168-9452(94)90032-9
[33] 魏婧, 徐畅, 李可欣, 贺洪军, 徐启江. 超氧化物歧化酶的研究进展与植物抗逆性. 植物生理学报, 2020, 56: 2571-2584.
Wei J, Xu C, Li K X, He H J, Xu Q J. Progress on superoxide dismutase and plant stress resistance. Plant Physiol J, 2020, 56: 2571-2584. (in Chinese with English abstract)
[34] 周方舟, 程昌新, 周冀衡, 李强, 刘诚, 蒋杰, 贺丹锋, 舒灏, 邵建平. 光照和紫外强度对烤烟生长及叶片组织结构的影响. 天津农业科学, 2017, 23(4): 14-18.
Zhou F Z, Cheng C X, Zhou J H, Li Q, Liu C, Jiang J, He D F, Shu H, Shao J P. Effects of light and ultraviolet intensity on the growth and leaf structure of flue-cured tobacco. Tianjin Agric Sci, 2017, 23(4): 14-18. (in Chinese with English abstract)
[35] 张继旭, 张忠锋, 刘文涛, 谭效磊, 张兴, 宗浩, 窦玉青. 不同光照强度对烤烟中上部叶片结构及物理性状的影响. 西南农业学报, 2019, 32: 322-326.
Zhang J X, Zhang Z F, Liu W T, Tan X L, Zhang X, Zong H, Dou Y Q. Effects of different light intensities on middle and upper leaf structure and physical properties of flue-cured tobacco. Southwest China J Agric Sci, 2019, 32: 322-326. (in Chinese with English abstract)
[36] Mu H, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W. Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. J Agron Crop Sci, 2010, 196: 38-47.
doi: 10.1111/j.1439-037X.2009.00394.x
[37] 贺明荣, 王振林, 高淑萍. 不同小麦品种千粒重对灌浆期弱光的适应性分析. 作物学报, 2001, 27: 640-644.
He M R, Wang Z L, Gao S P. Analysis of adaptability of different wheat varieties thousand-grain weight to low light during grain filling period. Acta Agron Sin, 2001, 27: 640-644 (in Chinnese with English abstract).
[38] Li H W, Jiang D, Wollenweber B, Dai T, Cao W X. Effects of shading on morphology, physiology and grain yield of winter wheat. Eur J Agron, 2010, 33: 267-275.
doi: 10.1016/j.eja.2010.07.002
[1] 刘晓颖, 张驰, 王雪晴, 杨晨晓, 王光钰, 卞云迪, 方芳, 王颖, 王振英. 栽培小麦Brock中抗白粉病相关基因TaRPP13-1B的克隆及功能分析[J]. 作物学报, 2023, 49(2): 392-401.
[2] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[3] 刘方方, 万映秀, 曹文昕, 李耀, 张琪琪, 李炎, 张平治. 小麦倒春寒抗性评价方法研究[J]. 作物学报, 2023, 49(2): 438-446.
[4] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟, . 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[5] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[6] 陶士宝, 柯健, 孙杰, 尹传俊, 朱铁忠, 陈婷婷, 何海兵, 尤翠翠, 郭爽爽, 武立权. 长江中下游地区不同穗型中籼杂交稻高产群体农艺特征[J]. 作物学报, 2023, 49(2): 511-525.
[7] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[8] 王雪, 王文辉, 李栋, 姚霞, 朱艳, 曹卫星, 程涛. 二向反射和方向半球反射光谱差异及其对小麦叶片叶绿素含量反演的影响[J]. 作物学报, 2023, 49(2): 485-496.
[9] 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响[J]. 作物学报, 2023, 49(2): 472-484.
[10] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[11] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[12] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[13] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[14] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[15] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[6] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[7] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[8] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[9] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[10] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .