• •
陈惠莹**,何嘉欣**,朱斌,黄士轩,周星佑,伍君权,杨美艳*
CHEN Hui-Ying**,HE Jia-Xin**,ZHU Bin,HUANG Shi-Xuan,ZHOU Xing-You,WU Jun-Quan,YANG Mei-Yan*
摘要:
水稻白叶枯病是由水稻黄单胞菌(Xanthomonas oryzae pv. oryzae, Xoo)引起的一种常见病害,可导致水稻大面积减产,对粮食安全造成巨大威胁。防治白叶枯病的化学药剂种类少,效果欠佳且对环境危害大,亟需开发安全高效的新型抗菌剂。噬菌体因其裂解细菌的高度特异性而备受关注。本研究从稻虾田水中分离获得一株水稻黄单胞菌噬菌体,命名为vB_XaS_HDB2 (HDB2)。电镜观察显示,噬菌体HDB2为长尾噬菌体,头部直径和尾部长度分别为(48 ± 3) nm、(166 ± 8) nm。全基因组分析结果显示,HDB2序列长43,697 bp,GC含量为54.31%,含有52个开放阅读框(ORFs)。其中30个为已知功能蛋白,按照不同功能分为DNA代谢、裂解、包装、结构这4个模块;该噬菌体含有1个tRNA,不含毒力基因和抗生素耐药基因。ANI、蛋白网络图与系统发育树分析表明,HDB2属于Septimatrevirus属成员,与噬菌体vB_Xar_IVIA-DoCa8相似度最高(97.74%)。HDB2能够裂解52.9% (9/17)的受测黄单胞菌菌株;一步生长曲线显示,HDB2的潜伏期为3 h,裂解期为5 h,裂解量为44 pfu cell?1;HDB2具有较好的温度(4℃~60℃)和pH (4~11)耐受性。体外抑菌结果显示,感染复数大于0.1时,噬菌体HDB2能有效抑制黄单胞菌Xoo 2086的生长。综上所述,我们分离纯化并鉴定了一株水稻黄单胞菌噬菌体,为噬菌体技术应用于作物细菌病害的防治提供了理论依据。
[1] Sun T, Yang X, Tan X L, Han K F, Tang S, Tong W M, Zhu S Y, Hu Z P, Wu L H. Comparison of agronomic performance between Japonica/indica hybrid and Japonica cultivars of rice based on different nitrogen rates. Agronomy, 2020, 10: 171. [2] 冯爱卿, 汪聪颖, 张梅英, 陈炳, 封金奇, 陈凯玲, 汪文娟, 杨健源, 苏菁, 曾列先, 等. 中国水稻主产区白叶枯病菌致病型分析及近等基因系鉴别寄主的构建. 中国农业科学, 2022, 55: 4175–4195. Feng A Q, Wang C Y, Zhang M Y, Chen B, Feng J Q, Chen K L, Wang W J, Yang J Y, Su J, Zeng L X, et al. Pathotype analysis of Xanthomonas oryzae pv. Oryzae in main rice producing regions of China and establishment of differential hosts of near-isogenic lines. Sci Agric Sin, 2022, 55: 4175–4195 (in Chinese with English abstract). [3] Yang Y, Zhou Y H, Sun J, Liang W F, Chen X Y, Wang X M, Zhou J, Yu C L, Wang J M, Wu S L, et al. Research progress on cloning and function of Xa genes against rice bacterial blight. Front Plant Sci, 2022, 13: 847199. [4] Yu L, Yang C D, Ji Z J, Zeng Y X, Liang Y, Hou Y X. First report of new bacterial leaf blight of rice caused by Pantoea ananatis in southeast China. Plant Dis, 2021. [5] Madhusudhan P, Sreelakshmi C, Naik R K, Vineetha U, Paramasiva I, Harathi P N. Screening of rice genotypes for resistance against blast and bacterial leaf blight. Plant Dis Res, 2022, 37: 75–78. [6] 狄蕊, 吴水祥, 谌江华. 水稻白叶枯病不同药剂防治试验. 农技服务, 2021, 38(12): 21–23. Di R, Wu S X, Chen J H. Experiment on control of rice bacterial blight with different pesticides. Agric Technol Serv, 2021, 38(12): 21–23 (in Chinese). [7] Chen Y, Yang X, Gu C Y, Zhang A F, Zhang Y, Wang W X, Gao T C, Yao J, Yuan S K. Activity of a novel bactericide, zinc thiazole against Xanthomonas oryzae pv. oryzae in Anhui province of China. Ann Appl Biol, 2015, 166: 129–135. [8] Kering K K, Kibii B J, Wei H P. Biocontrol of phytobacteria with bacteriophage cocktails. Pest Manag Sci, 2019, 75: 1775–1781. [9] Brüssow H. What is needed for phage therapy to become a reality in western medicine? Virology, 2012, 434: 138–142. [10] Yang Z C, Yin S P, Li G, Wang J, Huang G T, Jiang B, You B, Gong Y L, Zhang C, Luo X Q, et al. Global transcriptomic analysis of the interactions between phage φAbp1 and extensively drug-resistant Acinetobacter baumannii. mSystems, 2019, 4: e00068–19. [11] Ling H, Lou X Y, Luo Q H, He Z G, Sun M C, Sun J. Recent advances in bacteriophage-based therapeutics: insight into the post-antibiotic era. Acta Pharm Sin B, 2022, 12: 4348–4364. [12] Żaczek M, Weber-Dabrowska B, Miedzybrodzki R, Łusiak-Szelachowska M, Górski A. Phage therapy in Poland-a centennial journey to the first ethically approved treatment facility in Europe. Front Microbiol, 2020, 11: 1056. [13] Sulakvelidze A, Alavidze Z, Morris J G Jr. Bacteriophage therapy. Antimicrob Agents Chemother, 2001, 45: 649–659. [14] Li M Z, Jin Y Q, Lin H, Wang J X, Jiang X P. Complete genome of a novel lytic Vibrio parahaemolyticus phage VPp1 and characterization of its endolysin for antibacterial activities. J Food Prot, 2018, 81: 1117–1125. [15] Buttimer C, McAuliffe O, Ross R P, Hill C, O’Mahony J, Coffey A. Bacteriophages and bacterial plant diseases. Front Microbiol, 2017, 8: 34. [16] Perera M N, Abuladze T, Li M R, Woolston J, Sulakvelidze A. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol, 2015, 52: 42–48. [17] Yan T, Liang L, Yin P, Zhou Y, Sharoba A M, Lu Q, Dong X X, Liu K, Connerton I F, Li J Q. Application of a novel phage LPSEYT for biological control of Salmonella in foods. Microorganisms, 2020, 8: 400. [18] Huang Y L, Wang W H, Zhang Z H, Gu Y F, Huang A X, Wang J H, Hao H H. Phage products for fighting antimicrobial resistance. Microorganisms, 2022, 10: 1324. [19] 刘锦. 黄单胞菌噬菌体的分离鉴定和对水稻白叶枯病控治效果研究. 华中农业大学硕士学位论文, 湖北武汉, 2016. Liu J. Isolation and Identification of Xanthomonas oryzae pv. oryzae Phage and Study on its Control Efficiency of Bacterial Leaf Blight of Rice. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract). [20] Liu M J, Hu R, Xia M, He X Q, Jin Y. Novel broad-spectrum bacteriophages against Xanthomonas oryzae and their biocontrol potential in rice bacterial diseases. Environ Microbiol, 2023, 25: 2075–2087. [21] Jain L, Kumar V, Jain S K, Kaushal P, Ghosh P K. Isolation of bacteriophages infecting Xanthomonas oryzae pv. oryzae and genomic characterization of novel phage vB_XooS_NR08 for biocontrol of bacterial leaf blight of rice. Front Microbiol, 2023, 14: 1084025. [22] Jiang H B, Li C X, Huang X F, Ahmed T, Ogunyemi S O, Yu S H, Wang X, Ali H M, Khan F, Yan C Q, et al. Phage combination alleviates bacterial leaf blight of rice (Oryza sativa L.). Front Plant Sci, 2023, 14: 1147351. [23] Ogunyemi S O, Chen J, Zhang M C, Wang L, Masum M M I, Yan C Q, An Q L, Li B, Chen J P. Identification and characterization of five new op2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae. J Plant Pathol, 2019, 101: 263–273. [24] Huang Y, Lyu B, Zhang X, Tian Y, Lin C Y, Shen L Y, Yan H Q, Zhang D T, Jia L, Qu M, et al. Vibrio parahaemolyticus O10:K4: an emergent serotype with pandemic virulence traits as predominant clone detected by whole-genome sequence analysis - Beijing municipality, China, 2021. China CDC Wkly, 2022, 4: 471–477. [25] Li P, Zhang X Z, Xie X J, Tu Z F, Gu J, Zhang A Y. Characterization and whole-genome sequencing of broad-host-range Salmonella-specific bacteriophages for bio-control. Microb Pathog, 2020, 143: 104119. [26] Balcão V M, Moreli F C, Silva E C, Belline B G, Martins L F, Rossi F P N, Pereira C, Vila M M D C, da Silva A M. Isolation and molecular characterization of a novel lytic bacteriophage that inactivates MDR Klebsiella pneumoniae strains. Pharmaceutics, 2022, 14: 1421. [27] Witte S, Huijboom L, Klamert S, van de Straat L, Hagens S, Fieseler L, de Vegt B T, van Mierlo J T. Application of bacteriophages EP75 and EP335 efficiently reduces viable cell counts of Escherichia coli O157 on beef and vegetables. Food Microbiol, 2022, 104: 103978. [28] Tan S L, He J X, Liu Z K, Huang S X, Zhu B, Zhou X Y, Chen M T, Zhang J M, Wu Q P, Yang M Y. Isolation and characterization of a novel phage vB_BceS_LY1 and its application to control newly isolated Bacillus cereus in milk and rice. LWT, 2023, 187: 115293. [29] Han K, He X Q, Fan H H, Song L H, An X P, Li M Z, Tong Y G. Characterization and genome analysis of a novel Stenotrophomonas maltophilia bacteriophage BUCT598 with extreme pH resistance. Virus Res, 2022, 314: 198751. [30] Wang C, Li P Y, Niu W K, Yuan X, Liu H Y, Huang Y, An X P, Fan H, Zhangxiang L L, Mi L Y, et al. Protective and therapeutic application of the depolymerase derived from a novel kn1 genotype of Klebsiella pneumoniae bacteriophage in mice. Res Microbiol, 2019, 170: 156–164. [31] Sørensen M C H, Gencay Y E, Brøndsted L. Methods for initial characterization of Campylobacter jejuni bacteriophages. Methods Mol Biol, 2017, 1512: 91–105. [32] Zhang Y Y, Chen L P, Jiang Y, Yang B, Chen J C, Zhan L, Mei L L, Chen H H, Zhang J Y, Zhang Z, et al. Epidemiological and whole-genome sequencing analysis of a gastroenteritis outbreak caused by a new emerging serotype of Vibrio parahaemolyticus in China. Foodborne Pathog Dis, 2022, 19: 550–557. [33] Kumar P, Meghvansi M K, Kamboj D V. Isolation, phenotypic characterization and comparative genomic analysis of 2019SD1, a polyvalent enterobacteria phage. Sci Rep, 2021, 11: 22197. [34] Noor Mohammadi T, Shen C K, Li Y C, Zayda M G, Sato J, Masuda Y, Honjoh K I, Miyamoto T. Characterization of Clostridium perfringens bacteriophages and their application in chicken meat and milk. Int J Food Microbiol, 2022, 361: 109446. [35] Lefkowitz E J, Dempsey D M, Hendrickson R C, Orton R J, Siddell S G, Smith D B. Virus taxonomy: the database of the international committee on taxonomy of viruses (ICTV). Nucleic Acids Res, 2018, 46: D708–D717. [36] 方中达, 许志刚, 过崇俭, 殷尚智, 伍尚忠, 徐羡明, 章琦. 中国水稻白叶枯病菌致病型的研究. 植物病理学报, 1990, 20(2): 81–88. Fang Z D, Xu Z G, Guo C J, Yin S Z, Wu S Z, Xu X M, Zhang Q. Studies on pathotypes of Xanthomonas campestris pv. Oryzae in China. Acta Phytopathol Sin, 1990, 20(2): 81–88 (in Chinese with English abstract). [37] Cahill J, Young R. Phage lysis: multiple genes for multiple barriers. Adv Virus Res, 2019, 103:33–70. [38] Vázquez R, García E, García P. Phage lysins for fighting bacterial respiratory infections: a new generation of antimicrobials. Front Immunol, 2018, 9: 2252. [39] Gondil V S, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents, 2020, 55: 105844. [40] Rajaure M, Berry J, Kongari R, Cahill J, Young R. Membrane fusion during phage lysis. Proc Natl Acad Sci USA, 2015, 112: 5497–5502. [41] Bailly-Bechet M, Vergassola M, Rocha E. Causes for the intriguing presence of tRNAs in phages. Genome Res, 2007, 17: 1486–1495. [42] Yang J Y, Fang W W, Miranda-Sanchez F, Brown J M, Kauffman K M, Acevero C M, Bartel D P, Polz M F, Kelly L. Degradation of host translational machinery drives tRNA acquisition in viruses. Cell Syst, 2021, 12: 771–779. [43] Delesalle V A, Tanke N T, Vill A C, Krukonis G P. Testing hypotheses for the presence of tRNA genes in mycobacteriophage genomes. Bacteriophage, 2016, 6: e1219441. [44] Ye Y M, Chen H F, Huang Q L, Huang S X, He J X, Zhang J M, Wu Q P, Li X L, Hu W F, Yang M Y. Characterization and genomic analysis of novel Vibrio parahaemolyticus phage vB_VpaP_DE10. Viruses, 2022, 14: 1609. [45] Yang M Y, Chen H F, Guo S, Tan S L, Xie Z B, Zhang J M, Wu Q P, Tan Z Y. Characterization and genome analysis of a novel Vibrio parahaemolyticus phage vB_VpP_DE17. Virus Res, 2022, 307: 198580. [46] Yang M Y, Chen H F, Huang Q L, Xie Z B, Liu Z K, Zhang J M, Ding Y, Chen M T, Xue L, Wu Q P, et al. Characterization of the novel phage vB_VpaP_FE11 and its potential role in controlling Vibrio parahaemolyticus biofilms. Viruses, 2022, 14: 264. [47] 黄桥栏, 刘泽锟, 何嘉欣, 苏润斌, 谢转北, 黄士轩, 杨美艳. 烈性噬菌体Vb_VpP_AC2的分离鉴定及生物学特性分析. 现代食品科技, 2023, 39(7): 42–52. Huang Q L, Liu Z K, He J X, Su R B, Xie Z B, Huang S X, Yang M Y. Isolation and identification of lytic phage vB_VpP_AC2 and its biological characteristics. Mod Food Sci Technol, 2023, 39(7): 42–52 (in Chinese with English abstract). [48] Yang M Y, Liang Y J, Su R B, Chen H F, Wang J, Zhang J M, Ding Y, Kong L, Zeng H Y, Xue L, et al. Genome characterization of the novel lytic Vibrio parahaemolyticus phage vB_VpP_BA6. Arch Virol, 2019, 164: 2627–2630. [49] Yang M Y, Liang Y J, Huang S X, Zhang J M, Wang J, Chen H F, Ye Y M, Gao X Y, Wu Q P, Tan Z Y. Isolation and characterization of the novel phages vB_VpS_BA3 and vB_VpS_CA8 for lysing Vibrio parahaemolyticus. Front Microbiol, 2020, 11: 259. [50] Egido J E, Costa A R, Aparicio-Maldonado C, Haas P J, Brouns S J J. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev, 2022, 46: fuab048. [51] Yoo S, Lee K M, Kim N, Vu T N, Abadie R, Yong D. Designing phage cocktails to combat the emergence of bacteriophage-resistant mutants in multidrug-resistant Klebsiella pneumoniae. Microbiol Spectr, 2024, 12: e0125823. [52] Fujiki J, Nakamura K, Nakamura T, Iwano H. Fitness trade-offs between phage and antibiotic sensitivity in phage-resistant variants: molecular action and insights into clinical applications for phage therapy. Int J Mol Sci, 2023, 24: 15628. |
[1] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[2] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
[3] | 陈雷, 金曼, 张维乐, 王承旭, 吴勇斌, 王治忠, 唐晓艳. 杂草稻的特性及其危害与防治研究进展[J]. 作物学报, 2020, 46(7): 969-977. |
[4] | 陈天晓,朱亚军,密雪飞,陈凯,孟丽君,左示敏,徐建龙. 利用水稻MAGIC群体关联定位白叶枯病抗性QTL和创制抗病新种质[J]. 作物学报, 2016, 42(10): 1437-1447. |
[5] | 卓大龙,胡丹丹,张帆,张帆,石英尧,高用明,周永力,黎志康. 水稻抗白叶枯病新基因Xa39分子标记有效性的评价[J]. 作物学报, 2015, 41(05): 692-697. |
[6] | 林文雄. 化感水稻抑草作用的根际生物学特性与研究展望[J]. 作物学报, 2013, 39(06): 951-960. |
[7] | 郑崇珂,王春连,于元杰,梁云涛,赵开军. 水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位[J]. 作物学报, 2009, 35(7): 1173-1180. |
[8] | 樊颖伦; 陈学伟;王春连;朱立煌;章琦;赵开军. 水稻抗白叶枯病基因Xa23的RFLP标记定位及其STS标记的转化[J]. 作物学报, 2006, 32(06): 931-935. |
[9] | 潘海军;王春连;赵开军;章琦;樊颖伦;周少川;朱立煌. 水稻抗白叶枯病基因Xa23的PCR分子标记定位及辅助选择[J]. 作物学报, 2003, 29(04): 501-507. |
[10] | 贺立源;徐尚忠;李建生. 玉米自交系苗期耐酸的生物学和营养学特性[J]. 作物学报, 2000, 26(02): 205-209. |
[11] | 章琦;施爱农;王春莲;白建法;杨文才. 9个水稻品种对水稻白叶枯病(Xanthomonas or yzae pv.oryzae)的抗性遗传研究[J]. 作物学报, 1994, 20(01): 84-92. |
[12] | 章琦; 施爱农; 王春莲; 阙更生; T.W.Mew. 水稻白叶枯病(Xanthom onas campestris pv.oryzae)抗性遗传研究 Ⅲ.两个成株抗性基因X_a-6与X_a-3的等位性分析[J]. 作物学报, 1991, 17(03): 233-237. |
|