作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1378-1388.doi: 10.3724/SP.J.1006.2025.43036
• 耕作栽培·生理生化 • 上一篇
蒋雨洲1,3,王甲1,张宏媛2,冯文豪2,王鹏1,3,李玉义2,*
JIANG Yu-Zhou1,3,WANG Jia1,ZHANG Hong-Yuan2,FENG Wen-Hao2,WANG Peng1,3,LI Yu-Yi2,*
摘要:
针对农田忽略有机物料投入,影响土壤微生物群落结构、降低土壤速效养分和玉米产量低等问题,探究施用化肥配施有机物料对农田土壤微生物群落、土壤化学性质和玉米产量的影响,揭示不同有机物料投入农田对土壤细菌和真菌群落结构的变化、多样性和群落物种组成上差异性的特征,进一步分析土壤微生物群落与土壤化学性质间的关系,为科学施肥、维护土壤微生物生态系统和农业可持续发展等方面提供依据。基于连续2年的田间试验,研究了仅施用化肥(chemical fertilizer, CF)、化肥+秸秆腐熟物(chemical fertilizer + straw rot, CF+SR)、化肥+黄腐酸(chemical fertilizer + fulvic acid, CF+FA)和化肥+鸡粪(chemical fertilizer + chicken manure, CF+CM)处理对玉米根际土壤细菌和真菌群落丰度的影响。化肥配施有机物料有利于提高玉米产量和土壤速效养分含量。玉米田投入有机物料能够影响土壤微生物(细菌和真菌) α多样性,与施用化肥对照处理相比,化肥+秸秆腐熟物处理细菌shannon指数、ACE指数和chao1指数,分别提高了2.42%、23.24%和23.19%;而真菌α多样性与之相反,呈降低趋势。细菌目分类水平的Vicinamibacterales和Sphingomonadales相对丰度高,分别是酸杆菌门和变形菌门,而真菌目分类水平的Sordariales相对丰度高,属于子囊菌门。相关性分析表明,土壤微生物多样性与土壤养分含量密切相关。综上所述,化肥配施有机物料有利于调节玉米田土壤微生物群落特征,增强农业生态系统的功能和可持续性,尤其是化肥配施秸秆腐熟物效果最佳。
[1] 赵丽丽, 张新民. 中国土壤微生物领域研究现状与前沿热点分析. 农业图书情报学报, 2022, 34(2): 75–87. [2] Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive earth’s biogeochemical cycles. Science, 2008, 320: 1034–1039. [3] Jiang R, Wang M E, Chen W P, Li X Z, Balseiro-Romero M. Changes in the integrated functional stability of microbial community under chemical stresses and the impacting factors in field soils. Ecol Indic, 2020, 110: 105919.
[4] 吴宪, 王蕊, 胡菏, 修伟明, 李刚, 赵建宁, 杨殿林, 王丽丽, 王欣奕. 潮土细菌及真菌群落对化肥减量配施有机肥和秸秆的响应. 环境科学, 2020, 41: 4669–4681. [5] Prosser J I. Autotrophic nitrification in bacteria. Adv Microb Physiol, 1989, 30: 125–181. [6] Denef K, Roobroeck D, Manimel Wadu M C W, Lootens P, Boeckx P. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biol Biochem, 2009, 41: 144–153. [7] 宋长青, 吴金水, 陆雅海, 沈其荣, 贺纪正, 黄巧云, 贾仲君, 冷疏影, 朱永官. 中国土壤微生物学研究10年回顾. 地球科学进展, 2013, 28: 1087–1105. Song C Q, Wu J S, Lu Y H, Shen Q R, He J Z, Huang Q Y, Jia Z J, Leng S Y, Zhu Y G. Advances of soil microbiology in the last decade in China. Adv Earth Sci, 2013, 28: 1087–1105. [8] Abbott L K, Murphy D V. Soil Biological Fertility. Netherlands: Springer, 2007. pp 1–15.
[9] 刘青丽, 李志宏, 陈顺辉, 蒋雨洲, 张云贵, 李文卿. 稻草还田对烟田追肥气态氮损失及相关微生物的影响. 农业工程学报, 2020, 36: 246–253. [10] Kautz T, Wirth S, Ellmer F. Microbial activity in a sandy arable soil is governed by the fertilization regime. Eur J Soil Biol, 2004, 40: 87–94. [11] Ebhin Masto R, Chhonkar P K, Singh D, Patra A K. Changes in soil biological and biochemical characteristics in a long-term field trial on a subtropical inceptisol. Soil Biol Biochem, 2006, 38: 1577–1582. [12] Chen Z, Luo X Q, Hu R G, Wu M N, Wu J S, Wei W X. Impact of long-term fertilization on the composition of denitrify communities based on nitrite reductase analyses in a paddy soil. Microb Ecol, 2010, 60: 850–861.
[13] 陈哲, 陈春兰, 秦红灵, 王霞, 吴敏娜, 魏文学. 化肥对稻田土壤细菌多样性及硝化、反硝化功能菌组成的影响. 生态学报, 2009, 29: 6142–6147.
[14] 丁爽, 魏圣钊, 陈真亮, 邵婧, 段逢瑞, 严禹, 段兴武. 中国西南典型森林土壤微生物在不同土壤深度下的变化特征. 应用生态学报, 2023, 34: 614–622.
[15] 张翰林, 白娜玲, 郑宪清, 李双喜, 张娟琴, 张海韵, 周胜, 孙会峰, 吕卫光. 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响. 中国生态农业学报(中英文), 2021, 29: 531–539.
[16] 任宏芳, 王璐, 郝兴宇, 张东升, 宗毓铮, 李萍. 缓释肥处理下麦田土壤细菌和真菌群落对气候变化的响应. 中国土壤与肥料, 2022, (10): 50–63.
[17] 蒋雨洲, 陈顺辉, 李文卿, 刘青丽, 李志宏, 张云贵, 张燕, 唐英琪. 长期定位不同施肥类型对烟田土壤nifH细菌群落结构的影响. 中国烟草学报, 2021, 27(3): 35–45.
[18] 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析. 生态环境学报, 2023, 32: 1552–1562. [19] 王伟华, 刘毅, 唐海明, 孙志龙, 李宝珍, 葛体达, 吴金水. 长期施肥对稻田土壤微生物量、群落结构和活性的影响. 环境科学, 2018, 39: 430–437. Wang W H, Liu Y, Tang H M, Sun Z L, Li B Z, Ge T D, Wu J S. Effects of long-term fertilization on soil microbial biomass, community structure and activity in paddy field. Environ Sci, 2018, 39: 430–437 (in Chinese with English abstract). [20] Jorquera M A, Martínez O A, Marileo L G, Acuña J J, Saggar S, Mora M L. Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures. World J Microbiol Biotechnol, 2014, 30: 99–107. [21] Börjesson G, Menichetti L, Kirchmann H, Kätterer T. Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol Fertil Soils, 2012, 48: 245–257. [22] Berthrong S T, Buckley D H, Drinkwater L E. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microb Ecol, 2013, 66: 158–170. [23] Wei D, Yang Q, Zhang J Z, Wang S, Chen X L, Zhang X L, Li W Q. Bacterial community structure and diversity in a black soil as affected by long-term fertilization. Pedosphere, 2008, 18: 582–592.
[24] 丁建莉, 姜昕, 关大伟, 马鸣超, 赵百锁, 周宝库, 曹凤明, 李力, 李俊. 东北黑土微生物群落对长期施肥及作物的响应. 中国农业科学, 2016, 49: 4408–4418. [25] Dong W Y, Liu E K, Yan C R, Tian J, Zhang H H, Zhang Y Q. Impact of no tillage vs. conventional tillage on the soil bacterial community structure in a winter wheat cropping succession in Northern China. Eur J Soil Biol, 2017, 80: 35–42. [26] Naether A, Foesel B U, Naegele V, Wüst P K, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, et al. Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol, 2012, 78: 7398–7406.
[27] 王晓菲, 罗珠珠, 张仁陟, 牛伊宁, 李玲玲, 田建霞, 孙鹏洲, 刘家鹤. 黄土高原苜蓿-粮食作物轮作下土壤细菌群落特征和生态功能预测. 应用生态学报, 2022, 33: 1109–1117.
[28] 王娟娟, 朱紫娟, 钱晓晴, 王桂良. 全年稻麦秸秆还田对稻田土壤细菌群落结构的影响. 中国土壤与肥料, 2022, (4): 57–65. [29] Yu C R, Wang X J, Hu B, Yang C Q, Sui N, Liu R X, Meng Y L, Zhou Z G. Effects of wheat straw incorporation in cotton-wheat double cropping system on nutrient status and growth in cotton. Field Crops Res, 2016, 197: 39–51. [30] Miao Y C, Niu Y H, Luo R Y, Li Y, Zheng H J, Kuzyakov Y, Chen Z M, Liu D Y, Ding W X. Lower microbial carbon use efficiency reduces cellulose-derived carbon retention in soils amended with compost versus mineral fertilizers. Soil Biol Biochem, 2021, 156: 108–227. [31] Fan F L, Yin C, Tang Y J, Li Z J, Song A L, Wakelin S A, Zou J, Liang Y C. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biol Biochem, 2014, 70: 12–21. [32] Nsabimana D, Haynes R J, Wallis F M. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Appl Soil Ecol, 2004, 26(2): 81–92. [33] Spedding T A, Hamel C, Mehuys G R, Madramootoo C A. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem, 2004, 36: 499–512. [34] Yang J K, Zhang J J, Yu H Y, Cheng J W, Miao L H. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees. Appl Microbiol Biotechnol, 2014, 98: 1449–1458.
[35] 尹春江, 刘茂兰, 钟羡芳, 司友涛, 马红亮, 高人, 尹云锋. 强还原处理和施用有机肥对设施蔬菜地土壤微生物群落稳定性的影响. 应用生态学报, 2024, 35: 1293–1300.
[36] 王宇峰, 孟会生, 李廷亮, 谢钧宇, 栗丽, 李丽娜, 黄晓磊. 培肥措施对复垦土壤微生物碳氮代谢功能多样性的影响. 农业工程学报, 2020, 36(24): 81–90.
[37] 马龙, 高伟, 栾好安, 唐继伟, 李明悦, 黄绍文. 基于宏基因组学方法分析施肥模式对设施菜田土壤微生物群落的影响. 植物营养与肥料学报, 2021, 27: 403–416.
[38] 马南, 安婷婷, 张久明, 汪景宽. 添加玉米秸秆和根茬对不同肥力黑土微生物残体碳氮的影响. 中国农业科学, 2023, 56: 686–696. [39] Ning Y C, Wang X, Yang Y N, Cao X, Wu Y L, Zou D T, Zhou D X. Studying the effect of straw returning on the interspecific symbiosis of soil microbes based on carbon source utilization. Agriculture, 2022, 12: 1053. [40] Sharma V, Vashishtha A, Jos A L M, Khosla A, Basu N, Yadav R, Bhatt A, Gulani A, Singh P, Lakhera S, et al. Phylogenomics of the Phylum proteobacteria: resolving the complex relationships. Curr Microbiol, 2022, 79: 224.
[41] 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰. 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 2016, 32(2): 14–20. [42] Hedlund B P, Gosink J J, Staley J T. Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter. Antonie Van Leeuwenhoek, 1997, 72: 29–38. [43] Yadav A N. Beneficial plant-microbe interactions for agricultural sustainability. J App Biol Biotech, 2022, 9: 1–4. [44] Tran P, Ramachandran A, Khawasik O, Beisner B E, Rautio M, Huot Y, Walsh D A. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered Lakes. Environ Microbiol, 2018, 20: 2568–2584. |
[1] | 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160. |
[2] | 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521. |
[3] | 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531. |
[4] | 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268. |
[5] | 曾研华, 吴建富, 曾勇军, 范呈根, 谭雪明, 潘晓华, 石庆华. 机收稻草全量还田减施化肥对双季晚稻养分吸收利用及产量的影响[J]. 作物学报, 2018, 44(03): 454-462. |
[6] | 武雪萍;钟秀明;秦艳青;刘爽. 芝麻饼肥与化肥不同比例配施对烟叶香气质量的影响[J]. 作物学报, 2006, 32(10): 1554-1559. |
|