欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1959-1966.doi: 10.3724/SP.J.1006.2010.01959

• 耕作栽培·生理生化 • 上一篇    下一篇

生殖生长期两优培九功能叶光反应特性

于光辉1,陈国祥1,*,江玉珍1,苑中原1,吕川根2   

  1. 1南京师范大学生命科学学院植物研究所, 江苏南京 210046; 2江苏省农业科学院粮食与作物研究所, 江苏南京 210014
  • 收稿日期:2010-03-04 修回日期:2010-07-02 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 通讯作者: 陈国祥,E-mail:gxchen@njnu.edu.cn,Fax:025-85891526
  • 基金资助:

    本研究由国家自然科学基金项目(30771299)和高等学校博士学科点专项科研基金项目(20060319005)资助。

Light Reaction Characteristics in Functional Leaves of Liangyoupeijiu in the Reproductive Growth Stage

YU Guang-Hui1,CHEN Guo-Xiang1,*,JIANG Yu-Zhen1,YUAN Zhong-Yuan1,LÜ Chuan-Gen2   

  1. 1 College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; 2 Institute of food & Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2010-03-04 Revised:2010-07-02 Published:2010-11-12 Published online:2010-08-30
  • Contact: CHEN Guo-Xiang,E-mail:gxchen@njnu.edu.cn,Fax:025-85891526

摘要: 在野外条件下,利用荧光动力学分析和生理生化研究技术,对生殖生长期超高产杂交稻两优培九和大面积推广稻汕优63功能叶原初反应、电子传递和光合磷酸化水平进行系统研究,比较光反应特性。结果表明: (1) 与汕优63相比,两优培九功能叶叶绿素含量高22.90%,光合功能期长约50%,叶绿素a/b比值高36.78%;(2) 光能吸收与分配方面,两优培九功能叶单位叶面积吸收的光能不占优势,但保持高吸收的稳定期长,有活性的反应中心数量多,热耗散的能量比例较少,进入电子传递链的能量高;(3) 荧光参数分析发现两优培九PSII供体侧、受体侧和反应中心性能优良,光能吸收、传递和转化为电能效率较高;(4) 叶绿体放氧活性、电子传递链和光合磷酸化活性均显著高于汕优63,表明两优培九电能转化为活跃化学能能力强。

关键词: 荧光动力学, 功能叶, 原初反应, 电子传递和光合磷酸化, 光合功能期, PSII供体侧、受体侧和反应中心

Abstract: The chloroplast light reaction characteristics were compared between super-high-yield hybrid rice Liangyoupeijiu and traditional hybrid rice Shanyou 63 intending to provide theoretical insights into physiological basis for high yield. Using fluorescence dynamics analysis and physiological and biochemical research techniques, in the field we systematically studied the primary response, electron transport chain and photophosphorylation during the reproductive period. The results showed that: (1) as compared to Shanyou 63, chlorophyll content in functional leaves of Liangyoupeijiu was 22.90% higher, it had a relatively longer photosynthetic function duration and chla/chlb ratio was 36.78% higher; (2) there was no significant difference in light absorption per unit leaf area of functional leaves, but Liangyoupeijiu maintained a high light energy absorption capacity and long stability period , the number of active reaction centers was more, the energy of heat dissipation was relatively lower, the energy transferred into the electron transport chain was higher; (3) fluorescence analysis showed that structures and status of the body side, the receptor side and the reaction center in PSII performed better than those of Shanyou 63, indicating that Liangyoupeijiu had a higher efficiency in the transforming light energy into electric energy; (4) in addition, oxygen evolution of the chloroplast, activities of electron transport chain and photophosphorylation were significantly higher, indicating that Liangyoupeijiu possessed some advantages in the energy convertsion from electric energy to active chemical energy. With higher light energy absorption, transmission and conversion efficiency, Liangyoupeijiu established a physicological basis of super-high-yield.

Key words: Fluorescence dynamics, Functional leaves, Primary response, Electron transport chain and photophosphorylation, Photosynthetic function duration, the body side, the receptor side and the reaction center of PSII

[1]Wang Q(王强), Zhang Q-D(张其德), Lu C-M(卢从明), Kuang T-Y(匡廷云), Li C-Q(李成荃). Pigments content, net photosynthesis rate and water use efficiency of super high-yield rice hybrids at different developmental stages. Acta Phytoecol Sin (植物生态学报), 2002, 26(6): 647–651 (in Chinese with English abstract)
[2]Jiang Z-X(蒋之埙), Huang Z-Q(黄仲青), Meng Y-H(孟月华). Quantitative relationship between the quality of big seedlings and the source and sink of population at seed setting stages in middle hybrid rice. Acta Agron Sin(作物学报), 2002, 28(1): 65–68 (in Chinese with English abstract)
[3]Pan R-C(潘瑞炽). Plant Physiology (植物生理学), 5th edn. Beijing: Higher Education Press, 2004. pp 66–73(in Chinese)
[4]Kausky H, Hirsch A. Neue versuche zur kohlensäureassimilation. Naturwissenschaften, 1931, 19: 96
[5]Strasser B J, Strasser R J. Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Mathis P ed. Photosynthesis: from Light to Biosphere. Dordrecht: KAP Press, 1995, Vol. 5: 977–980
[6]Strasser R J. The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids. In: Akoyunoglou G ed. Photosynthesis III. Structure and Molecular Organization of the Photosynthetic Apparatus. Philadelphia: BISS Press, 1981. pp 727–737
[7]Arnon D I. Copper enzymes in isolated chloroplasts, Polyphenol oxidase in Bete vulgaris. Plant Physiol, 1949, 24: 1–15
[8]Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, eds. Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylor and Francis Press, 2000, Chapter 25: 445–483
[9]Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee eds. Advances in Photosynthesis and Respiration. Netherlands: KAP Press, 2004, Chapter 12: 1–47
[10]Li P-M(李鹏民), Gao H-Y(高辉远), Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. J Plant Physiol Mol Biol (植物生理学与分子生物学学报), 2005, 31(6): 559–566 (in Chinese with English abstract)
[11]Ketcham S R, Davenport J W, Warncke K, McCarty R E. Role of the γ subunit of chloroplast coupling factor 1 in the light-dependent activation of phosphosphorylation and ATPase activity by dithiothreitol. J Biol Chem, 1984, 259: 7286–7293
[12]Ma G-Y(马国英), Fang Z-W(方志伟), Zhang R-X(张荣铣). Isolation of protoplasts and chloroplasts from wheat leaf and measurement of their photosynthetic rate. Plant Physiol Commun (植物生理学通讯), 1991, 27(1):53–55 (in Chinese)
[13]Dunahay T G, Staehelin L A, Seibert M. Structural, biochemical and biophysical characterization of four oxygen evolving photosystem II preparations from spinach. Biochimical et Biophysica Acta, 1984, 764: 179–193
[14]Coombs J, Hall D O. Techniques in Bioproductivity and Photosynthesis. Oxford: Pergamon Press, 1982. pp 136–137
[15]Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Yang T-N(杨图南), Zhang R-X(张荣铣), Kuang T-Y(匡廷云). Studies on photosynthetic rate and function duration of rice germplasm resources. Chin J Rice Sci (中国水稻科学), 2001, 15(1): 29–34 (in Chinese with English abstract)
[16]Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 319–349
[17]Govindjee. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust J Plant Physiol, 1995, 22: 131–160
[18]Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P eds. Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylor and Francis Press, 2000, Chapter 25: 445–483
[19]Guissé B, Srivastava A, Strasser R J. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat stressed leaves. Archs Sci Genève, 1995, 48: 147–160
[20]Chen G X, Liu S H, Zhang C J, Lü C G. Effects of drought on photosynthetic characteristics of flag leaves of a newly-developed superhigh-yield rice hybrid. Photosynthetica, 2004, 42: 573–578
[21]Appenroth K J, Stöckel J, Srivastava A, Strasser R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by O-J-I-P chlorophyll a fluorescence measurements. Environ Pollut, 2001, 115: 49–64
[22]Van Heerden P D R, Strasser R J, Krüger G H J. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol Plant, 2004, 121: 239–249
[23]Van Heerden P D R, Tsimilli-Michael M, Krüger G H J, Strasser R J. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol Plant, 2003, 117: 476–491
[24]Öquist G, ChowW S, Anderson J M. Photoinhibition of photosynthesis represents a mechanism for long-term regulation of photosystem II. Planta, 1992, 186: 450–460
[25]Xu D Q, Wu S. Three phases of dark recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions. Photosynthetica, 1996, 32: 417–423
[26]Wang N(王娜), Chen G-X(陈国祥), Lü C-G(吕川根). Studies on photosynthetic characteristics of flag leaves in hybrid rice Liangyoupeijiu and its parents. Hybrid Rice (杂交水稻), 2004, 19(1): 53–55
[27]Cui J-L(崔继林). Photosynthesis and Productivity (光合作用与生产力). Jiangsu: Jiangsu Scientific and Technical Publishers, 2000. p 282 (in Chinese)
[1] 叶露幻,沈唯军,郑宝刚,宋涛,陈国祥,吕川根. 两优培九剑叶衰老过程光合膜功能及蛋白质复合物的变化[J]. 作物学报, 2013, 39(11): 2030-2038.
[2] 肖华贵,杨焕文,饶勇,杨斌,朱英. 甘蓝型油菜黄化突变体的光合特性及叶绿素荧光参数分析[J]. 作物学报, 2013, 39(03): 520-529.
[3] 张子山,李耕,高辉远,刘鹏,杨程,孟祥龙. 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化[J]. 作物学报, 2013, 39(01): 93-100.
[4] 孙啸震,张黎妮,戴艳娇,贺新颖,周治国,王友华. 花铃期增温对棉花干物重累积的影响及其生理机制[J]. 作物学报, 2012, 38(04): 683-690.
[5] 于莎, 王友华, 周治国, 吕丰娟, 刘敬然, 马伊娜, 陈吉. 花铃期遮阴对棉花氮素代谢的影响及其机制研究[J]. 作物学报, 2011, 37(10): 1879-1887.
[6] 陈富成, 祁建民, 徐建堂, 陈涛, 陶爱芬, 林培清, 陈美霞, 郭英, 李华丽. 圆果种黄麻功能叶总蛋白提取方法及双向电泳体系的优化[J]. 作物学报, 2011, 37(02): 369-373.
[7] 赵洪兵, 郭会君, 赵林姝, 古佳玉, 赵世荣, 李军辉, 刘录祥. 空间环境诱变小麦叶绿素缺失突变体的主要农艺性状和光合特性[J]. 作物学报, 2011, 37(01): 119-126.
[8] 王正航,武仙山,昌小平,李润植,景蕊莲. 小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析[J]. 作物学报, 2010, 36(2): 217-227.
[9] 周治国. 苗期遮荫对棉花功能叶光合特性和光合产物代谢的影响[J]. 作物学报, 2001, 27(06): 967-973.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!