欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 680-687.doi: 10.3724/SP.J.1006.2010.00680

• 研究简报 • 上一篇    下一篇

花后不同时期油菜籽饼粕赖氨酸含量的遗传分析

陈国林1,2,吴建国1,张莉1,石春海1,*   

  1. 1浙江大学农业与生物技术学院,浙江杭州310029;2浙江林学院农业与食品学院,浙江临安300300
  • 收稿日期:2009-09-10 修回日期:2009-12-25 出版日期:2010-04-12 网络出版日期:2010-03-03
  • 通讯作者: 石春海,E-mail:chhshi@zju.edu.cn;Tel:0571-86971691
  • 基金资助:

    本研究由浙江省科技厅面上科研农业项目(2008C22084), 教育部高等学校骨干教师资助计划项目和浙江省“151人才工程”专项基金项目资助。

Genetic Analysis for Lysine Content of Rapeseed Cake (Brassic napus L.) at Different Periods after Anthesis

CHEN Guo-Lin1,2,WU Jian-Guo1,ZHANG Li1,SHI Chun-Hai1,*   

  1. 1College of Agriculture and Biotechnology,Zhejiang University,Hangzhou 310029,China;2School of Biosystems Engineering and Food Sciences,Zhejiang Forestry University,Lin'an 330330,China
  • Received:2009-09-10 Revised:2009-12-25 Published:2010-04-12 Published online:2010-03-03
  • Contact: SHI Chun-Hai,E-mail:chhshi@zju.edu.cn;Tel:0571-86971691

摘要:

采用条件和非条件数量遗传分析方法,利用不同环境条件下的两年试验数据,分析了胚(子叶)、细胞质和母体植株等不同遗传体系的遗传主效应及其环境互作效应对油菜籽饼粕赖氨酸含量的影响。结果表明,油菜籽饼粕赖氨酸含量在各个发育时期的表现同时受制于不同遗传体系的遗传主效应和环境互作效应,且以环境互作效应为主,故油菜籽发育过程中不同遗传体系基因的表达会受到环境条件的显著影响。在不同遗传体系的基因效应中,除花后36 d的胚主效应较大外,各发育时期以母体效应为主,其中母体显性主效应和母体加性互作效应的作用尤为明显。条件遗传分析表明,花后23~29 d控制赖氨酸含量的数量基因表达最为活跃;一些基因效应在不同发育时期还存在着间断性表达的现象。油菜籽饼粕赖氨酸含量的狭义遗传率较高,多数发育时期是以母体遗传率为主,根据母体植株上油菜籽饼粕赖氨酸含量的总体表现进行选择可以取得较好的改良效果。

关键词: 油菜籽, 赖氨酸含量, 发育遗传, 遗传主效应, 环境互作效应, 遗传率

Abstract:

Both conditional and unconditional analysis methods were applied to estimate the genetic main effects and the genotype × environment (GE) interaction effects from embryo (cotyledon), cytoplasmic and maternal plant at different periods after anthesis for lysine content of rapeseed cake by using two-year experimental data. Lysine content (LC) in rapeseed cake was simultaneously controlled by the genetic main effects and their GE interaction effects from different genetic systems, especially for the GE interaction effects. Therefore, the expression of genes conferring LC in the different genetic systems could be significantly influenced by the environments. Among the different genetic components, the maternal effects on LC of rapeseed cake were the most important at all periods after anthesis except for the larger embryo main effects at 36 day after flowering, in which both maternal dominance effect and maternal additive interaction effect were more visible. It was found that the new expression of quantitative genes on LC trait was most active at 23–29 days after flowering by using the conditional statistical analysis method. The discontinuity of gene expression in the developmental process of rapeseed was also observed. The total narrow-sense heritability of LC was high, of which the maternal heritability was important at most periods after anthesis. It was suggested that LC could be efficiently improved when selection is based on the holistic performance of maternal plants in generations. The study further suggested that Eyouchangjia and Gaoyou 605 were better than other parents for increasing LC of progenies.

Key words: Rapeseed(Brassica napus L.), Lysine content, Developmental genetics, Genetic main effects, Genotype×environment interaction effects, Heritability

[1] Xiong Z-Y(熊志勇), Xia F-J(夏伏建), Lu S-G(陆师国). The protein classification of fine rapeseed cake. J Wuhan Bot Res (武汉植物学研究), 2001, 19(3): 259–261 (in Chinese)

[2] Shi C H, Xue J M, Yu Y G, Yang X E, Zhu J. Analysis of genetic effects on nutrient traits in indica rice. Theor Appl Genet, 1996, 92: 1099–1102

[3] Shi C H, Zhu J, Wu J G, Yang X E, Yu Y G. Analysis of embryo, endosperm, cytoplasmic and maternal effects for heterosis of protein and lysine content in indica hybrid rice. Plant Breed, 1999, 118: 574–576

[4] Yan X-F(闫新甫), Xu S-Y(徐绍英), Li W-F(李卫芬), Chen H-J(陈浩军), Zhu J(朱军). Analysis of seed and maternal genetic effects on the contents of seven essential amino acids in two-rowed barley. Sci Agric Sin (中国农业科学). 1997, 30(2): 34–41 (in Chinese with English abstract)

[5] Wu J G, Shi C H, Zhang X M, Katsura T. Genetic and genotype × environment interaction effects for the content of seven essential amino acids in indica rice. J Genet, 2004, 83, 171–178

[6] Wu J G, Shi C H, Zhang X M, Katsura T. Genetic analysis of non-essential amino acid contents in rice (Oryza sativa L.) across environments. Hereditas, 2004, 141: 128–134

[7] Wu J G, Shi C H, Zhang H Z. Genetic analysis of embryo, cytoplasmic, and maternal effects and their environment interactions for protein content in Brassica napus L. Aust J Agric Res, 2005, 56: 69–73

[8]     Ren Y-L(任玉玲), Shi C-H(石春海), Wu J-G(吴建国), Zhang H-Z(张海珍). Analysis of embryo, cytoplasmic and maternal effects on three amino acid traits in rapeseed. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报·农业与生物技术版), 2005, 31 (1): 41–46 (in Chinese with English abstract)

[9] Variath M T, Wu J G, Li Y X, Chen G L, Shi C H. Genetic analysis for oil and protein contents of rapeseed (Brassica napus L.) at different developmental times. Euphytica, 2009, 166: 145–153

[10]Wu J-G(吴建国), Shi C-H(石春海), Zhang H-Z(张海珍). Study on developing calibration models of fat acid composition in intact spectroscopy and spectral analysis rapeseed by near infrared reflectance spectroscopy. Spectr Spectr Anal (光谱学与光谱分析),2006, 26(2): 259–262 (in Chinese with English abstract)

[11]Wu J G; Shi C H, Zhang X M. Estimating the amino acid composition in the milled rice powder by near-infrared reflectance spectroscopy. Field Crops Res, 2002, 75: 1–7

[12]Zhu J, Weir B S. Analysis of cytoplasmic and maternal effects: I. A genetic model for diploid plant seeds and animals. Theor Appl Genet, 1994, 89: 153–159

[13]Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633–1639

[14]Griffing B. Concept of general and specific combining ability in relation to diallel crossing system. Aust J Biol Sci, 1956, 9: 463–493

[15]Hayman B I. The theory and analysis of diallel cross. Genetics, 1954, 139: 799–809

[16]Shi C H, Wu J G, Wu P. Developmental behavior of gene expression for brown rice thickness under different environments. Genesis, 2002, 33: 185–190

[17]Shi C H, Zhang H Z, Wu J G, Li C T, Ren Y L. Genetic and genotype × environment interaction effects analysis for erucic acid content in rapeseed (Brassica napus L.). Euphytica, 2003, 130: 249–254
[1] 曹新川,胡守林,韩秀锋,何良荣,郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系[J]. 作物学报, 2020, 46(02): 300-306.
[2] 梁慧珍,余永亮,杨红旗,董薇,许兰杰,牛永光,张海洋,刘学义,方宣钧. 大豆叶片性状和叶绿素含量QTL间的上位性和环境互作效应[J]. 作物学报, 2015, 41(06): 889-899.
[3] 温娟,许剑锋,龙艳,徐海明,孟金陵,吴建国,石春海. 油菜籽半必需氨基酸含量的种子胚和母体植株QTL定位与分析[J]. 作物学报, 2015, 41(01): 57-65.
[4] 梁慧珍,余永亮,杨红旗,张海洋,董薇,李彩云,杜华,巩鹏涛,刘学义,方宣钧. 大豆产量及主要农艺性状QTL的上位性互作和环境互作分析[J]. 作物学报, 2014, 40(01): 37-44.
[5] 周立军;江玲;刘喜;陈红;陈亮明;刘世家;万建民. 水稻千粒重和垩白粒率的QTL及其互作分析[J]. 作物学报, 2009, 35(2): 255-261.
[6] 单大鹏;朱荣胜;陈立君;齐照明;刘春燕;胡国华;陈庆山. 大豆蛋白质含量相关QTL间的上位效应和QE互作效应[J]. 作物学报, 2009, 35(1): 41-47.
[7] 单大鹏;齐照明;邱红梅;单彩云;刘春燕;胡国华;陈庆山. 大豆油分含量相关的QTL间的上位效应和QE互作效应[J]. 作物学报, 2008, 34(06): 952-957.
[8] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369-375.
[9] 王瑞;徐新福;李加纳;唐章林;谌利. 甘蓝型油菜硫苷组分的胚、细胞质和母体遗传效应分析[J]. 作物学报, 2007, 33(12): 2001-2006.
[10] 曹刚强;高用明;朱军. 多环境下水稻DH群体剑叶长度的QTL分析[J]. 作物学报, 2007, 33(02): 223-229.
[11] 宁海龙;李文霞;李文滨. 大豆脂肪酸组分的胚、细胞质和母体遗传效应分析[J]. 作物学报, 2006, 32(12): 1873-1877.
[12] 胡洁云;杨文鹏;张祖新;郑用琏. 玉米Opaque-2基因内3个SSR位点的显性等位变异及其对赖氨酸含量的影响[J]. 作物学报, 2006, 32(09): 1265-1271.
[13] 梁康迳;林文雄;王雪仁;章清杞;陈志雄;梁义元;郭玉春;陈芳育. 籼型三系杂交水稻单茎茎鞘干物质重的发育遗传研究[J]. 作物学报, 2003, 29(02): 274-279.
[14] 林文雄;梁康迳;梁义元;陈芳育;郭玉春;曾建敏. 水稻对紫外线B辐射增强的抗性遗传分析[J]. 作物学报, 2002, 28(05): 686-692.
[15] 李仕贵;马玉清;何平;王玉平;周开达;朱立煌. 不同环境条件下水稻生育期和株高的QTL分析[J]. 作物学报, 2002, 28(04): 546-550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!