欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 41-47.doi: 10.3724/SP.J.1006.2009.00041

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆蛋白质含量相关QTL间的上位效应和QE互作效应

单大鹏1,2,4,朱荣胜5**,陈立君6,齐照明2,刘春燕1,2,胡国华1,3,*,陈庆山2,*   

  1. 1黑龙江农垦科研育种中心,黑龙江哈尔滨 150090;2东北农业大学大豆研究所,黑龙江哈尔滨150030;3国家大豆工程技术研究中心,黑龙江哈尔滨150050;4 黑龙江省农科院绥化分院,黑龙江绥化152052;5 东北农业大学理学院,黑龙江哈尔滨150030;6 黑龙江省农业科学作物育种研究所,黑龙江哈尔滨 150086
  • 收稿日期:2008-04-20 修回日期:2008-07-14 出版日期:2009-01-12 网络出版日期:2008-11-17
  • 通讯作者: 陈庆山
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2004CB117203-5),国家高技术研究发展计划(863计划)项目(2006AA10Z1F4),黑龙江省教育厅科技研究项目(10551029),黑龙江省博士后科研启动金(LHK-04014),黑龙江省博士后项目(LRB06-126)资助

Epistatic Effects and QE Interaction Effects of QTLs for Protein Content in Soybean

SHAN Da-Peng1,2,4,ZHU Rong-Seng5,*,CHEN Li-Jun6,QI Zhao-Ming2,HU Guo-Hua1,3,*,CHEN Qing-Shan2,*   

  1. 1Crop Research and Breeding Center of Land-Reclamation,Harbin 150090,China;2 Soybean Research Institute, Northeast Agricultural Universtity,Harbin 150030,China;3The National Research Center of Soybean Engine ering and Technology,Harbin 150050,China; 4Heilongjiang Academy of Agricultural Sciences,Suihua Institute,Suihua 152052,China;5College of Science,Northeast Agricultural University,Harbin 150030,China;6 Heilongjiang Academy of Agricultural Sciences Crop Breeding Institute, Harbin 150086,China
  • Received:2008-04-20 Revised:2008-07-14 Published:2009-01-12 Published online:2008-11-17
  • Contact: CHEN Qing-Shan

摘要:

利用Charleston×东农594重组自交系构建的SSR遗传图谱及混合线性模型方法对20022006连续5年的大豆蛋白质含量进行QTL定位,并作加性效应,加性×加性上位互作效应及环境互作效应分析。共检测到10个控制蛋白质含量的QTL,分别位于第B2C2D1aEN连锁群,其中1个表现为遗传正效应,9个表现为遗传负效应,另检测到15对影响蛋白质含量的加性×加性上位互作效应的QTL,解释该性状总变异的13.75%。环境互作检测中,发现9QTL与环境存在互作,贡献率达到4.47%

关键词: 大豆, 蛋白质含量, 混合线性模型, QTL与环境互作效应, 上位互作效应

Abstract:

Soybean [Glycine max (L). Merr.], widely grown in United States, Brazil, Argentina, and China, is one of the plant protein source. Protein content in soybean is a quantitative trait controlled by multiple genes, and Currently, SoyBase (2007) documented at least 76 QTL associated with protein content that have been mapped in many different populations and environments. The objective of the paper was to investigate epistatic effects and QE interaction effects of QTLs for protein content by mixed linear model. QTLs for soybean protein content were detected in a five-year experiment with the recombination inbred lines (RIL) population derived from a cross between Charleston and Dongnong 594. Ten QTLs with additive effects for protein content were mapped in the linkage groups B2, C2, D1a, E and N, one of which was the positive effect contributed by Charleston, the others of which were the negative effects donated by Dongnong 94. Fifteen QTLs pairs with epistatic effects for protein content in the RIL were detected, accounting for 13.57% of the general phenotypic variation. There existed interaction between 9 QTLs and environment, and the general contribution to protein content was 4.47%.

Key words: Soybean, Protein content, Mixed linear model, QTL×environment interaction, Epistatic effects

[1]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128
[2]Wu X-L(吴晓雷), Wang Y-J(王永军), He C-Y(贺超英), Chen S-Y(陈受宜), Gai J-Y(盖钧镒), Wang X-C(王学臣). QTLs mapping of some agronomic traits of soybean. Acta Genet Sin (遗传学报), 2001, 28(10): 947–955(in Chinese with English abstract)
[3]Brummer E C, Graef G L, Orf J, Wilcox J R, Shoemaker R C. Mapping QTL for seed protein and oil content in English soybean population. Crop Sci, 1997, 37: 370–378
[4]Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gressoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129: 387–393
[5]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552–561
[6]Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for protein and oil concentration, and seed size in soybean. Crop Sci, 2005, 45: 2015–2022
[7]Zhu J(朱军). General genetic models and new analysis methods for quantitative traits. J Zhejiang Agric Univ (浙江农业大学学报), 1994, 20(6): 551–559(in Chinese with English abstract)
[8]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL-environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255–1264
[9]Yuan A-P(袁爱平), Cao L-Y(曹立勇), Zhuang J-Y(庄杰云), Li R-Z(李润植), Zheng K-L(郑康乐), Zhu J(朱军), Cheng S-H(程式华). Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2003, 30(10) : 899–906 (in Chinese with English abstract)
[10]Li Z-F(李泽福), Zhou T(周彤), Zheng T-Q(郑天清), Luo L-G(罗林广), Xia J-F(夏加发), Zhai H-Q(翟虎渠), Wan J-M(万建民). Analysis of QTL×environment interactions for heading date of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(6): 771–776(in Chinese with English abstract)
[11]Gao Y-M(高用明), Zhu J(朱军), Song Y-S(宋佑胜), He C-X(何慈信), Shi C-H(石春海), Xing Y-Z(邢永忠). Use of permanent F2 population to analyze epistasis and their interaction effects with environments for QTLs controlling heading date in Rice. Acta Agron Sin (作物学报), 2004, 30(9): 849–854(in Chinese with English abstract)
[12]Zhan J-P(张焦平), Jiang L-R(江良荣), Huang J-X(黄建勋), Zhang K(张凯), Wang H-C(王侯聪), Huang Y-M(黄育民). Analysis of epistatic and QE interaction effects of QTL controlling heading date in rice (Oryza sativa L.). Mol Plant Breed (分子植物育种), 2006, 4(3): 351–357(in Chinese with English abstract)
[13]Cao L-Y(曹立勇), Zhan X-D(占小登), Zhuang J-Y(庄杰云), Zheng K-L(郑康乐), Cheng S-H(程式华). QTL mapping and epistasis analysis for yield components in a RIL population of rice (Oryza sativa L. subsp. indica). Sci Agric Sin (中国农业科学), 2003, 36(11): 1241–1247(in Chinese with English abstract)
[14]Wang D-L(王道龙), Zhu J(朱军), Li Z-K(黎志康), Paterson A H. QTLMaper1.6. (2004-12)
[2005-2]. http://ibi.zju.edu.cn/software/qtlmapper/index.htm
[15]Zhang Z-C(张忠臣), Zhan X-L(战秀玲), Chen Q-S(陈庆山), Teng W-L(腾卫丽), Yang Q-K(杨庆凯), Li W-B(李文滨). QTL mapping of seed oil and protein content of soybean. Soybean Sci (大豆科学), 2004, 23(2): 81–85(in Chinese with English abstract)
[16]Jansen R C, Van Ooijien J M, Stam P. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91: 33–37
[17]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651
[18]Specht J E, Chase K, Macrander M, Graef B L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509
[19]Guo L-B(郭龙彪), Luo L-J(罗利军), Xing Y-Z(邢永忠), Xu C-G(徐才国), Mei H-W(梅捍卫), Wang Y-P(王一平), Zhong D-B(钟代彬), Qian Q(钱前), Ying C-S(应存山), Shi C-H(石春海). Dissection of QTLs in two years for important agronomic traits in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2003, 17(3): 211–218(in Chinese with English abstract)
[20]Bao J-S(包劲松), Bao Z-Y(包志毅), He P(何平), Zhu L-H(朱立煌). Detection of QTLs controlling heading date in the process of rice development at two environments. J Zhejiang Univ (浙江大学学报), 2002, 28(1): 27–32(in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!