欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 48-56.doi: 10.3724/SP.J.1006.2009.00048

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

用单片段代换系(SSSLs)研究水稻株高及其构成因素QTL加性及上位性效应

赵芳明1,张桂权2,曾瑞珍2,杨正林1,朱海涛2,钟秉强1,凌英华1,何光华1*   

  1. 1西南大学水稻研究所/农业部生物技术与作物品质改良重点开放实验室,重庆400716;2华南农业大学广东省植物分子育种重点实验室,广东广州510642
  • 收稿日期:2008-05-09 修回日期:2008-09-16 出版日期:2009-01-12 网络出版日期:2008-11-17
  • 通讯作者: 何光华
  • 基金资助:

    本研究由国家自然科学基金重点项目(30330370),西南大学博士点基金项目,农学与生物科技学院重点实验室开放基金项目资助

Analysis on Additive Effects and Epistasis Effects of QTL for Plant Height and Its Components Using Single Segment Substitution Lines(SSSLs)in Rice

ZHAO Fang-Ming,ZHANG Gui-Quan,ZENG Rui-Zhen,YANG Zeng-Lin,ZHU Hai-Tao,ZHONG Bing-Qiang,LIN Ying-Hua,HE Guang-Hua   

  1. 1Rice Research Institute, Southwest University/Key Laboratory of Biotechnology and Crop Quality Improvement,Ministry of Agriculture,Chongqing 400716,China;2 Guangdong Key Laboratory of Plant Molecular Breeding,South China Agricultural University, Guangzhou 510642,China
  • Received:2008-05-09 Revised:2008-09-16 Published:2009-01-12 Published online:2008-11-17
  • Contact: HE Guang-Hua

摘要:

株高是典型的数量性状,易受遗传背景和环境等因素的影响。单片段代换系和双片段聚合系减少了个体间遗传背景的干扰,是鉴定QTL和研究QTL上位性的新型遗传材料。本研究采用随机区组试验设计方法以初级单片段代换系间杂交衍生的16个次级单片段代换系和15个双片段聚合系分析了株高及其构成因素QTL的加性效应及加性×加性上位性效应。共鉴定出11QTL,其中3个株高QTL1个倒1节间长QTL2个倒2节间长QTL2个倒3节间长QTL3个倒4节间长QTL,分布于第4610染色体上。鉴定出23对双基因互作,其中7对为没有显著效应的座位间互作,16对为有显著效应的QTL与没有显著效应的座位间互作。结果表明,QTL加性效应和QTL间的上位性效应都是株高及构成因素的重要遗传组成。通过单片段代换系杂交衍生的次级单片段代换系和双片段聚合系可提高QTL鉴定和上位性分析的灵敏度。

关键词: 水稻, 单片段代换系, 株高, QTL, 上位性效应

Abstract:

Plant height is a typical quantitative trait that is liable to be influenced by genetic backgrounds and environments. As a novel research material, single segment substitution lines and double segment pyramiding lines in rice will make QTL identification and epistasis analysis more accurate because of diminishing the interference of genetic backgrounds among plants. In this study, Detection of QTLs controlling plant height and its components and analysis of epistasis effects were done with 16 secondary single segment substitution lines and 15 double segment pyramiding lines derived from crossing of primary SSSLs by randomized blocks design. The main results showed that 11 QTLs were detected and distributed on chromosomes 4, 6, and 10, of which three QTLs controlling plant height, one QTL coffering length of the first inernode from the top, two QTLs harboring length of the second internode from the top, two QTLs for length of the third internode from the top and three QTL controlling length of the fourth internode from the top were included. Twenty-three digenic interactions were detected for plant height and its components, of which seven interactions occurred between two loci both not having main effects on the traits, and 16 interactions each involved one locus having a main effect at the single-locus level and another locus that did not show significant effect at the single-locus level. The results indicated that both additive effects of QTL and epistasis effects between QTLs were important genetic components. Efficiency of QTLs identification and epistasis effects analysis between QTLs could be improved using secondary single segment substitution lines and double segment pyramiding lines derived from crossing of primary single segment substitution lines.

Key words: Rice, Single segment substitution lines(SSSLs), Plant height, Quantitative trait loci(QTL), Epistasis effects

[1]Zhang Z-Y(张志勇), Huang Y-M(黄育民), Zhang K(张凯), Wang H-C(王侯聪), Jiang L-R(江良荣). Detection of QTL for plant height in rice (Oryza sativa L.) and analysis of QTL mapping accuracy. J Xiamen Univ (Nat Sci) (厦门大学学报·自然科学版), 2008, 47(1): 116–121(in Chinese with English abstract)
[2]Ye S-P(叶少平), Li J-Q(李杰勤), Zhang Q-J (张启军), Zhao B(赵兵), Li P(李平). Mapping of quantitative trait loci for plant height of rice under different environments. J Sichuan Agric Univ (四川农业大学学报), 2006, 24(1): 20–24 (in Chinese with English abstract)
[3]Fan Y-Y(樊叶杨), Zhuang J-Y(庄杰云), Li Q(李强), Francisco S, Zheng K-L(郑康乐). Analysis of quantitative trait loci (QTL) for plant height and the relation between these QTL and QTL for yield traits in rice. Acta Agron Sin (作物学报), 2001, 27(6): 915–922 (in Chinese with English abstract)
[4]Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Guimaraes E P, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 41–52
[5]Lin H-X(林鸿宣), Zhuang J-Y(庄杰云), Qian H-R(钱惠荣), Lu J(陆军), Min S-K(闵绍楷), Xiong Z-M(熊振民), Huang N(黄宁), Zheng K-L(郑康乐). Mapping QTLs for plant height and its components by molecular markers in rice (Oraza Sativa L.). Acta Agron Sin (作物学报), 1996, 22(3): 257–263(in Chinese with English abstract)
[6]Yuan A-P(袁爱平), Cao L-Y(曹立勇), Zhuang J-Y(庄杰云), Li R-Z(李润植), Zheng K-L(郑康乐), Zhu J(朱军), Cheng S-H(程式华). Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2003, 30(10): 899–906(in Chinese with English abstract)
[7]Tan Z-B(谭振波), Shen L-S(沈利爽), Kuang H-C(况浩池), Lu C-F(陆朝福), Chen Y(陈英), Zhou K-D(周开达), Zhu L-H(朱立煌). Identification of QTLs for length of the top internods and other traits in rice and analysis of their genetic effects. Acta Genet Sin (遗传学报), 1996, 23(6): 439–446(in Chinese with English abstract)
[8]Liu W-J(刘文俊), Wang L-Q(王令强), He Y-Q(何予卿). Comparison of quantitative trait loci controlling plant height and heading date in rice across two related populations. J Huazhong Agric Univ (华中农业大学学报), 2007, 26(2): 161–166(in Chinese with English abstract)
[9]Liao C-Y, Wu P, Hu B, Yi K-K. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104–111
[10]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162
[11]Monna L, Lin H X, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3 into two loci, Hd3a and Hd3b controlling headind date in rice. Theor Appl Genet, 2002, 104: 772–778
[12]Kubo T, Nakamura K, Yoshimura A. Development of a series of indica chromosome segment substitution lines in japonica background of rice. Rice Genet Newsl, 1999, 16: 104–106
[13]Wan J-L(万建林), Zhai H-Q(翟虎渠), Wan J-M(万建民), An J-X(安井秀), Ji C-C(吉村淳). Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.), using japonica chromosome segment substitution lines. Acta Genet Sin (遗传学报), 2003, 30(10): 893–898(in Chinese with English abstract)
[14]Zhang G Q, Zeng R Z, Zhang Z M, Ding X H, Li W T, Liu G M, He F H, Tulukdar A, Huang C F, Xi Z Y, Qin L J, Shi J Q, Zhao F M, Feng M J, Shan Z L, Chen L, Guo X Q, Zhu H T, Lu Y G. The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl, 2004, 21: 85–87
[15]He F-H(何风华), Xi Z-Y(席章营), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Developing single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin (遗传学报), 2005, 32(8):825–831(in Chinese with English abstract)
[16]Zeng R-Z(曾瑞珍), Shi J-Q(施军琼), Huang C-F(黄朝锋), Zhang Z-M(张泽民), Ding X-H(丁效华), Li W-T(李文涛), Zhang G-Q(张桂权). Development of a series of single segment substitution lines in Indica background of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(1): 88–95(in Chinese with English abstract)
[17]Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single segment substitution lines (SSSLs) in the genetic background of an elite cultivar in rice (Oryza sativa L.). Genome, 2006, 49: 476–484
[18]Liu G-M(刘冠明), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci (中国水稻科学), 2003, 17(3): 201–204(in Chinese with English abstract)
[19]He F-H(何风华), Xi Z-Y(席章营), Zeng R-Z(曾瑞珍), Tulukdar A, Zhang G-Q(张桂权). Mapping of heading date QTLs in rice (Oryza sativa L.) using single segment substitution lines. Sci Agric Sin (中国农业科学), 2005, 38(8): 1505–1513(in Chinese with English abstract)
[20]He F-H(何风华), Xi Z-Y(席章营), Zeng R-Z(曾瑞珍), Tulukdar A, Zhang G-Q(张桂权). Identification of Q TL for plant height and its component s by using single segment substitution lines in rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2005, 19(5): 387–392(in Chinese with English abstract)
[21]Zeng R-Z(曾瑞珍), Tulukdar A, Liu F(刘芳), Zhang G-Q(张桂权). Mapping of the QTLs controlling grain shape in rice using single segment substitution lines. Sci Agric Sin (中国农业科学), 2006, 39(4): 647–654(in Chinese with English abstract)
[22]Zhao F M, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Detection of QTLs for stabilities using SSSLs important agronomic traits in rice. Agric Sci China, 2007, 6: 769–778
[23]Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics, 1996, 143: 1807–1817
[24]Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153–160
[25]Yu S B, Li J X, Xu C G, Tan Y, Li X H, Zhang Q F. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002, 104: 619–625
[26]Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L. Analysis on additive effects and analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet, 2002, 105: 1137–1145
[27]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124: 735–742
[28]Gur A, Zamir D. Unused natural variation can lift yield barriers in plant breeding. PLoS Biol, 2004, 2: 1610–1615
[29]Alper K B, Ku H M, Tanksley S D. Fw2.2: a major QTL controlling fruit weight is common to both red- and green- fruited tomato species. Theor Appl Genet, 1995, 91: 994–1000
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!