作物学报 ›› 2009, Vol. 35 ›› Issue (1): 33-40.doi: 10.3724/SP.J.1006.2009.00033
童晋,詹高淼,王新发,刘贵华,华玮,王汉中
TONG Jin,ZHAN Gao-Miao, WANG Xin-Fa,LIU Gui-Hua,HUA Wei,WANG Han-Zhong
摘要:
柠檬酸合酶是植物多种代谢途径的限速酶, 及代谢变化的标志酶。为了解油菜柠檬酸合酶基因的生理功能, 以甘蓝型油菜叶片cDNA为模板, 设计特异性引物, 获得一编码柠檬酸合酶基因的cDNA序列, 全长1 659 bp, ORF区含476个氨基酸残基, 序列比对显示其蛋白序列与拟南芥有较高的同源性(96.0%), 氨基末端含一线粒体靶信号。聚类分析表明, 油菜柠檬酸合酶基因与其他植物内该基因高度同源。对油菜幼苗进行植物生长调节物质、高温和低温、强光照和弱光照、盐、菌核病、干旱和水渍等处理, 采用半定量PCR法对油菜叶片柠檬酸合酶基因的表达模式进行检测, 发现在盐胁迫、暗光和强光的处理下, 柠檬酸合酶基因的表达基本没有变化;在水渍、干旱、IAA和6-BA胁迫下, 其表达有所升高, 但出现峰值的时间不同, ABA对表达模式的影响与IAA相反;感染菌核病后其表达降低;对GA3的应答呈鞍型。对部分处理采用荧光定量PCR验证, 其结果与半定量PCR结果基本一致。
[1]Wang H-Z(王汉中). Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(1):101–105(in Chinese with English abstract) [2]O'Hara P, Slabas A R, Fawcett T. Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiol, 2002, 129: 310–320 [3]Ohlrogge J, Pollard M, Bao X, Focke M, Girke T, Ruuska S, Mekhedov S, Benning C. Fatty acid synthesis: From CO2 to functional genomics. Biochem Soc Trans, 2005, 28: 567–573 [4]Schnarrenberger C, Martin W. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants: A case study of endosymbiotic gene transfer. Eur J Biochem, 2002, 269: 868–883 [5]Morgunov I, Srere P A. Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate. J Biol Chem, 1998, 273:29540–29544 [6]de la Fuente J M, Ramirez-Rodriguez V, Cabrera-Ponce J L, Herrera-Estrella L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 1997, 276: 1566–1568 [7]Pracharoenwattana I, Cornah J E, Smith S M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell, 2005, 17: 2037–2048 [8]Koyama H, Takita E, Kawamura A, Hara T, Shibata D. Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol, 1999, 40: 482–488 [9]Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol, 2000, 41: 1030–1037 [10]Zhang S-S(张珊珊), Ming F(明凤), Lu Q(路群). Molecular cloning and characterization of citrate synthasegene in rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2008, 19(6): 501–505(in Chinese with English abstract) [11]Hu L-H(胡利华), Wu H-M(吴慧敏), Zhou Z-M(周泽民). Introduction of citrate synthase gene(cs) into an elite indica rice restorer line Minghui 86 by a grobacterium-mediated method. Mol Plant Breed (分子植物育种), 2006, 4(2):160–166 (in Chinese with English abstract) [12]Wen T(文涛), Xiong Q-E(熊庆蛾), Zeng W-G(曾伟光), Liu Y-P(刘远鹏). Changes of organic acid synthetase activity during fruit development of navel organ. Acta Hort Sin (园艺学报), 2001, 28(2):161–163 (in Chinese with English abstract) [13]Zhang X-M(张秀梅), Du L-Q(杜丽清), Sun G-M(孙光明). Changes in organic acid concentrations and the relative enzyme activities during the development of Cayenne pineapple fruit. J Fruit Sci (果树学报), 2007, 24(3): 381–338(in Chinese) [14]Shi D-Q(石东乔), Zhou Y-H(周奕华), Chen Z-H(陈正华). Manipulation of plant fatty acid. Chin Bull Life Sci (生命科学), 2002, 5(14): 291–295(in Chinese with English abstract) [15]Molina I, Ohlrogge J B, Pollard M. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Plant J, 2008, 53: 437–449 [16]Hua W(华玮), Li R-J(李荣俊), Liang S-P(梁述平), Lü Y-T(吕应堂). Gene expression and activity regulation of two calmodulin binding protein kinases in tobacco seedling. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2005, 31(3): 305–331(in Chinese with English abstract) [17]Hua W, Zhang L, Liang S P, Jones R L, Lu Y T. A tobacco calcium/calmodulin-binding protein kinase functions as a negative regulator of flowering. J Biol Chem, 2004, 279: 31483–31494 [18]Guo Y(郭彦), Yang H-S(杨洪双), Li Q-X(李清旭), Sun X-B(孙学彬). Effects of hormones on the tolerance of wild soybean Seedlings against water stress. J Henan Agric Sci (河南农业科学), 2007, (4): 37–39(in Chinese with English abstract) [19]Li R J, Wang H Z, Mao H, Lu Y T, Hua W. Identification of differentially expressed genes in seeds of two near-isogenic (Brassica napus) lines with different oil content. Planta, 2006, 224: 952–962 [20]Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucl Acids Res, 1987, 15: 8125–8148 [21]Attardi G, Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol, 1988, 4: 290–333 [22]Tsuwamoto R, Fukuoka H, Takahata Y. Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta, 2007, 225: 641–652 [23]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- [Delta] [Delta]CT method. Methods, 2001, 25: 402–408 [24]Leland E F. Growth, seed yield, and oil content of Canola grown under saline conditions. Agron J, 1994, 86: 233–237 [25]Zhong X-H(钟雪花), Yang W-N(杨万年), Lü Y-T(吕应堂). Comparative research on some physiological characteristics of tobacco and rape under flooding stress. J Wuhan Bot Res (武汉植物学研究), 2002, 20(5): 395–398(in Chinese with English abstract) [26]Zhu H-X(朱惠霞), Sun W-C(孙万仓), Deng B(邓斌). Study on cold hardiness and its physiological and biochemical characteristics of w inter turnip rapeseed (Brassica campetris). Acta Agric Boreali-Occident Sin (西北农业学报), 2007, 16(4): 34–38(in Chinese with English abstract) [27]Xiang J(项俊), Chen Z-B(陈兆波), Wang P(王沛), Yu L-J(余龙江), Li M-T(栗茂腾). The effect of caciz treatment on the change of drought related physiological and biochemical indexes of Brassica napus. J Huazhong Agric Univ (华中农业大学学报), 2007, 26(5): 607–611(in Chinese with English abstract) [28]Zhao X-H(赵小虎), Chen C-L(陈翠莲), Jiao C-X(焦春香), Gan L(甘莉), Lu J-W(鲁剑巍). Physiological and biochemical reaction responses to sclerotium blight inoculation among different rapeseed varieties. J Huazhong Agric Univ (华中农业大学学报), 2006, 25(5): 488–492(in Chinese with English abstract) [29]Yuan J(袁晶), Wang Q-M(汪俏梅), Zhang H-F(张海峰). Interactions between phytohormone signals. Chin J Cell Biol (细胞生物学杂志), 2005, 27(3): 325–328(in Chinese with English abstract)) |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[5] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[6] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[7] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[8] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[9] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[10] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[11] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[12] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[13] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[14] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[15] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
|