欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 33-40.doi: 10.3724/SP.J.1006.2009.00033

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

油菜柠檬酸合酶基因的克隆及在逆境下的表达

童晋,詹高淼,王新发,刘贵华,华玮,王汉中   

  1. 中国农科院油料作物研究所/农业部油料作物遗传改良重点开放实验室,湖北武汉 430062
  • 收稿日期:2008-05-06 修回日期:2008-07-16 出版日期:2009-01-12 网络出版日期:2008-11-17
  • 通讯作者: 王汉中
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101607),国家自然科学基金项目(30600395)资助

Cloning of Citrate Synthase Gene in Rapeseed(Brassica napus L.) and Its Expression under Stresses

TONG Jin,ZHAN Gao-Miao, WANG Xin-Fa,LIU Gui-Hua,HUA Wei,WANG Han-Zhong   

  1. Oil Crops Research Institute,Chinese Academy of Agricultural Sciences, Wuhan 430062,China
  • Received:2008-05-06 Revised:2008-07-16 Published:2009-01-12 Published online:2008-11-17
  • Contact: WANG Han-Zhong

摘要:

柠檬酸合酶是植物多种代谢途径的限速酶, 及代谢变化的标志酶。为了解油菜柠檬酸合酶基因的生理功能, 以甘蓝型油菜叶片cDNA为模板, 设计特异性引物, 获得一编码柠檬酸合酶基因的cDNA序列, 全长1 659 bp, ORF区含476个氨基酸残基, 序列比对显示其蛋白序列与拟南芥有较高的同源性(96.0%), 氨基末端含一线粒体靶信号。聚类分析表明, 油菜柠檬酸合酶基因与其他植物内该基因高度同源。对油菜幼苗进行植物生长调节物质、高温和低温、强光照和弱光照、盐、菌核病、干旱和水渍等处理, 采用半定量PCR法对油菜叶片柠檬酸合酶基因的表达模式进行检测, 发现在盐胁迫、暗光和强光的处理下, 柠檬酸合酶基因的表达基本没有变化;在水渍、干旱、IAA6-BA胁迫下, 其表达有所升高, 但出现峰值的时间不同, ABA对表达模式的影响与IAA相反;感染菌核病后其表达降低;对GA3的应答呈鞍型。对部分处理采用荧光定量PCR验证, 其结果与半定量PCR结果基本一致。

关键词: 油菜, 柠檬酸合酶, 表达模式, 胁迫

Abstract:

As a key enzyme of some metabolisms, citrate synthase shows a sign for metabolism. In order to investigate the function of citrate synthase gene, the cDNA encoding citrate synthase was cloned from rapeseed leaf by RT-PCR. It was 1 659 bp long and encoded a protein with 476 amino acids. The deduced protein sequence had a mitochondrial targeting signal in N-terminal, which was very similar to the citrate synthase in Arabidopsis thaliana (96.0%). Alignment analysis showed that citrate synthase gene had high homology in plants. Under different stresses, we tested the expression of citrate synthase gene in rapeseed leaf by using semi-quantitative PCR. The expression of citrate synthase gene had no obvious change in stresses of salt, dark, high illumination, while was increased at different time in treatments of water logging, drought, IAA, and 6-BA. Interestingly the effect of ABA was contrary to that of IAA. In the treatment of sclerotium blight, the expression of citrate synthase gene was depressed. There was a saddle curve of citrate synthase gene expression in the treatment of gibberellin. The results from real-time PCR of several treatments were mainly in accord with that from semi-quantitative PCR.

Key words: Rapeseed(Brassica napus L.), Citrate synthase, Expression pattern, Stress

[1]Wang H-Z(王汉中). Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(1):101–105(in Chinese with English abstract)
[2]O'Hara P, Slabas A R, Fawcett T. Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiol, 2002, 129: 310–320
[3]Ohlrogge J, Pollard M, Bao X, Focke M, Girke T, Ruuska S, Mekhedov S, Benning C. Fatty acid synthesis: From CO2 to functional genomics. Biochem Soc Trans, 2005, 28: 567–573
[4]Schnarrenberger C, Martin W. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants: A case study of endosymbiotic gene transfer. Eur J Biochem, 2002, 269: 868–883
[5]Morgunov I, Srere P A. Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate. J Biol Chem, 1998, 273:29540–29544
[6]de la Fuente J M, Ramirez-Rodriguez V, Cabrera-Ponce J L, Herrera-Estrella L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 1997, 276: 1566–1568
[7]Pracharoenwattana I, Cornah J E, Smith S M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell, 2005, 17: 2037–2048
[8]Koyama H, Takita E, Kawamura A, Hara T, Shibata D. Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol, 1999, 40: 482–488
[9]Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol, 2000, 41: 1030–1037
[10]Zhang S-S(张珊珊), Ming F(明凤), Lu Q(路群). Molecular cloning and characterization of citrate synthasegene in rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2008, 19(6): 501–505(in Chinese with English abstract)
[11]Hu L-H(胡利华), Wu H-M(吴慧敏), Zhou Z-M(周泽民). Introduction of citrate synthase gene(cs) into an elite indica rice restorer line Minghui 86 by a grobacterium-mediated method. Mol Plant Breed (分子植物育种), 2006, 4(2):160–166 (in Chinese with English abstract)
[12]Wen T(文涛), Xiong Q-E(熊庆蛾), Zeng W-G(曾伟光), Liu Y-P(刘远鹏). Changes of organic acid synthetase activity during fruit development of navel organ. Acta Hort Sin (园艺学报), 2001, 28(2):161–163 (in Chinese with English abstract)
[13]Zhang X-M(张秀梅), Du L-Q(杜丽清), Sun G-M(孙光明). Changes in organic acid concentrations and the relative enzyme activities during the development of Cayenne pineapple fruit. J Fruit Sci (果树学报), 2007, 24(3): 381–338(in Chinese)
[14]Shi D-Q(石东乔), Zhou Y-H(周奕华), Chen Z-H(陈正华). Manipulation of plant fatty acid. Chin Bull Life Sci (生命科学), 2002, 5(14): 291–295(in Chinese with English abstract)
[15]Molina I, Ohlrogge J B, Pollard M. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Plant J, 2008, 53: 437–449
[16]Hua W(华玮), Li R-J(李荣俊), Liang S-P(梁述平), Lü Y-T(吕应堂). Gene expression and activity regulation of two calmodulin binding protein kinases in tobacco seedling. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2005, 31(3): 305–331(in Chinese with English abstract)
[17]Hua W, Zhang L, Liang S P, Jones R L, Lu Y T. A tobacco calcium/calmodulin-binding protein kinase functions as a negative regulator of flowering. J Biol Chem, 2004, 279: 31483–31494
[18]Guo Y(郭彦), Yang H-S(杨洪双), Li Q-X(李清旭), Sun X-B(孙学彬). Effects of hormones on the tolerance of wild soybean Seedlings against water stress. J Henan Agric Sci (河南农业科学), 2007, (4): 37–39(in Chinese with English abstract)
[19]Li R J, Wang H Z, Mao H, Lu Y T, Hua W. Identification of differentially expressed genes in seeds of two near-isogenic (Brassica napus) lines with different oil content. Planta, 2006, 224: 952–962
[20]Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucl Acids Res, 1987, 15: 8125–8148
[21]Attardi G, Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol, 1988, 4: 290–333
[22]Tsuwamoto R, Fukuoka H, Takahata Y. Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta, 2007, 225: 641–652
[23]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-
[Delta]
[Delta]CT method. Methods, 2001, 25: 402–408
[24]Leland E F. Growth, seed yield, and oil content of Canola grown under saline conditions. Agron J, 1994, 86: 233–237
[25]Zhong X-H(钟雪花), Yang W-N(杨万年), Lü Y-T(吕应堂). Comparative research on some physiological characteristics of tobacco and rape under flooding stress. J Wuhan Bot Res (武汉植物学研究), 2002, 20(5): 395–398(in Chinese with English abstract)
[26]Zhu H-X(朱惠霞), Sun W-C(孙万仓), Deng B(邓斌). Study on cold hardiness and its physiological and biochemical characteristics of w inter turnip rapeseed (Brassica campetris). Acta Agric Boreali-Occident Sin (西北农业学报), 2007, 16(4): 34–38(in Chinese with English abstract)
[27]Xiang J(项俊), Chen Z-B(陈兆波), Wang P(王沛), Yu L-J(余龙江), Li M-T(栗茂腾). The effect of caciz treatment on the change of drought related physiological and biochemical indexes of Brassica napus. J Huazhong Agric Univ (华中农业大学学报), 2007, 26(5): 607–611(in Chinese with English abstract)
[28]Zhao X-H(赵小虎), Chen C-L(陈翠莲), Jiao C-X(焦春香), Gan L(甘莉), Lu J-W(鲁剑巍). Physiological and biochemical reaction responses to sclerotium blight inoculation among different rapeseed varieties. J Huazhong Agric Univ (华中农业大学学报), 2006, 25(5): 488–492(in Chinese with English abstract)
[29]Yuan J(袁晶), Wang Q-M(汪俏梅), Zhang H-F(张海峰). Interactions between phytohormone signals. Chin J Cell Biol (细胞生物学杂志), 2005, 27(3): 325–328(in Chinese with English abstract))
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[5] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[6] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[7] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[8] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[9] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[10] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[11] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[12] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[15] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!