欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1125-1133.doi: 10.3724/SP.J.1006.2011.01125

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

CIMMYT小麦材料的苗期和成株抗叶锈病鉴定

韩烨1,何中虎2,3,夏先春2,李星1,李在峰1,*,刘大群1,*   

  1. 1 河北农业大学植物保护学院 / 河北省农作物病虫害生物防治工程技术研究中心,河北保定 071001;2 中国农业科学院作物科学研究所 / 国家小麦改良中心,北京 100081;3 CIMMYT中国办事处,北京 100081
  • 收稿日期:2010-12-28 修回日期:2011-03-27 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: 李在峰, E-mail: lzf7551@yahoo.com.cn, Tel: 0312-7528500; 刘大群, E-mail: ldq@hebau.edu.cn
  • 基金资助:

    本研究由引进国外先进农业科学技术计划(948计划)项目(2006G2), 国家自然科学基金项目(30971772, 30700505), 河北省自然科学基金项目(C2010000702)资助。

Seedling and Slow Rusting Resistances to Leaf Rust in CIMMYT Wheat Lines

HAN Ye1,HE Zhong-Hu2,3,XIA Xian-Chun2,LI Xing1,LI Zai-Feng1,*,LIU Da-Qun1,*   

  1. 1 College of Plant Protection, Agricultural University of Hebei / Biological Control Center of Plant Disease and Plant Pests of Hebei Province, Baoding 071000, China; 2 Institute of Crop Sciences / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 CIMMYT China Office, Beijing 100081, China
  • Received:2010-12-28 Revised:2011-03-27 Published:2011-07-12 Published online:2011-05-11
  • Contact: 李在峰, E-mail: lzf7551@yahoo.com.cn, Tel: 0312-7528500; 刘大群, E-mail: ldq@hebau.edu.cn

摘要: 选择来自CIMMYT的103个小麦品种(系)及35个含有已知抗叶锈基因的对照品种,苗期接种17个中国小麦叶锈菌小种以鉴定这些品种中可能含有的抗叶锈病基因, 并于2008-2009和2009-2010连续2年对这些材料进行成株抗叶锈病鉴定。通过苗期鉴定结合系谱分析和分子检测,在46个品种中共鉴定出Lr26Lr34Lr42Lr47等4个抗叶锈病基因,其中9个品种携带Lr26基因,28个品种含有成株抗叶锈病基因Lr34基因,Lr42可能存在于11个品种中,还有2个材料可能含有Lr47,其他57个品种(系)对供试的15个小种多数表现为高抗,没有鉴定出已知的抗叶锈病基因。通过两年的田间抗叶锈病鉴定共筛选出46个表现慢锈的品种。苗期和田间结果表明,CIMMYT材料中含有丰富的对我国叶锈菌小种有效的苗期和成株抗叶锈基因,这些材料均可应用于我国小麦的抗叶锈病育种。

关键词: CIMMYT小麦, 叶锈病, 基因鉴定, 慢锈性

Abstract: CIMMYT wheat has played an important role in wheat breeding in China. Identification of leaf rust resistance genes in CIMMYT wheat is important for developing wheat cultivars with resistance to leaf rust in China. A total of 103 CIMMYT wheat lines and a set of 35 differential lines, mostly near-isogenic lines in the background of Thatcher with known leaf rust resistance genes were inoculated with 15 Chinese pathotypes of Puccinia triticina for postulating leaf rust resistance genes in CIMMYT wheats at the seedling stage. These genotypes were also planted in the field for characterization of slow rusting responses to leaf rust in the 2008–2009 and 2009–2010 cropping seasons.Four leaf rust resistance genes Lr26, Lr34, Lr42, and Lr47 were postulated in 46 genotypes through seedling test, pedigree analysis and molecular maker detection. Resistance gene Lr26 was present in nine accessions. Lr34 was identified in 28 lines. Lr42 was found in eleven lines and two lines might contain Lr47. Known resistance genes were not identified in the other 57 accessions and these lines were resistant to most of pathotypes tested. Forty-six genotypes showed slow leaf rusting resistance in the two cropping seasons. The results from seedling and field tests showed that CIMMYT wheats carry abundant effective seedling and adult plant resistance genes, and can be used in breeding resistant cultivars for durable control of wheat leaf rust in China.

Key words: CIMMYT wheat, Leaf rust, Identification of genes, Slow-rusting resistance

[1]Argenta G, Ferreira da Silva P R, Sangoi L. Leaf relative chlorophyll content as an indicator parameter to predict nitrogen fertilization in maize. Ciência Rural, Santa Maria, 2004, 34: 1379–1387
[2]Piekielek W P, Fox R H, Toth J D, Macneal K E. Use of a chlorophyll meter at the early dent stages of corn to evaluate nitrogen sufficiency. Agron J, 1995, 87: 403–408
[3]Vidal I, Longeri L, Hètier J M. Nitrogen uptake and chlorophyll meter measurements in spring wheat. Nutr Cycl Agroecosyst, 1999, 55: 1–6
[4]Tremblay N, Fortier É, Mellgren R, Belec C, Jenni S. The Dualex—a new tool to determine nitrogen sufficiency in broccoli. Acta Hortic, 2009, 824: 121–131
[5]Schröder J J, Neeteson J J, Oenema O, Struik P C. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crops Res, 2000, 66: 151–164
[6]Blackmer T M, Schepers J S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J Prod Agric, 1995, 8: 56–60
[7]Samborski S M, Tremblay N, Fallon E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron J, 2009, 101: 800–816
[8]Goulas Y, Cerovic Z G, Cartelat A, Moya I. Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl Opt, 2004, 43: 4488–4496
[9]Cartelat A, Cerovic Z G, Goulas Y, Meyer S, Lelarge C, Prioul J L, Barbottinc A, Jeuffroy M H, Gate P, Agati G, Moya I. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Res, 2005, 91: 35–49
[10]Tremblay N, Wang Z, Bèlec C. Evaluation of the Dualex for the assessment of corn nitrogen status. J Plant Nutr, 2007, 30: 1355–1369
[11]Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol. Biochem, 2007, 45: 244–249
[12]Jones C G, Hartley S E. A protein competition model of phenolic allocation. OIKOS, 1999, 86: 27–44
[13]Meyer S, Cerovic Z G, Goulas Y, Montpied P, Demotes-Mainard S, Bidel L P R, Moya I, Dreyer E. Relationships between optically assessed polyphenols and chlorophyll contents and leaf mass per area ratio in woody plants: a signature of the carbon-nitrogen balance within leaves? Plant Cell Environ, 2006, 29: 1338–1348
[14]Cheruiyot E K, Mumera L M, Ngètich W K, Hassanali A, Wachira F. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci Biotechnol Biochem, 2007, 71: 2190–2197
[15]Liao C F H, Bartholomew WV. Relation between nitrate absorption and water transpiration by maize. Soil Sci Soc Am Proc, 1974, 38: 472–479
[16]Buljovcic Z, Engels C. Nitrate uptake ability by maize roots during and after drought stress. Plant Soil, 2001, 229: 125–135
[17]Martìnez D E, Guiamet J J. Distortion of the SPAD-502 chlorophyll meter readings by changes in irradiance and leaf water status. Agron J, 2004, 24:41–46
[18]Scalabrelli G, Saracini E, Remorini D, Massai R. Changes in leaf phenolic compounds in two grapevine varieties (Vitis vinifera L.) grown in different water conditions. Acta Hortic, 2007, 754: 295–299
[19]Estiarte M, Penuelas J, Kimball B A, Hendrix D L, Pinter P J, Wall G W, LaMorte R L, Hunsaker D J. Free-air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiol Plant, 1999, 105: 423–433
[20]Isaac R A, Johnson W C. Determination of total nitrogen in plant tissue using a block digester. J Assoc Off Anal Chem, 1976, 59: 98–100
[21]Lachat Instruments. 2005. Methods list for automated ion analyzers (flow injection analyses, ion chromatography)
[2005-4-8] http://www. lachatinstruments.com/ applications/MethodsList.PDF.
[22]SAS Institute. SAS for windows. V.9.1. SAS Inst., Cary, NC, 2003
[23]Little T M, Hills F J. Agricultural Experimentation: Design and Analysis. Paperback. Wiley, 1978
[24]Hedeker D, Gibbons R D. Longitudinal data analysis. New Jersey: John Wiley & Sons, Inc. Hoboken, 2006
[25]Klaus H, Oscar K. Design and Analysis of Experiments. New Jersey: John Wiley & Sons, Inc., Hoboken, 2008
[26]Elwadie M E, Pierce F J, Qi J. Remote sensing of canopy dynamics and biophysical variables estimation of corn in Michigan. Agron J, 2005, 97: 99–105
[27]Schlemmer M R, Francis D D, Shanahan J F, Schepers J S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron J, 2005, 97: 106–112
[28]Sanchez R A, Hall A J, Trapani N, de Hunau R C. Effects of water stress on the chlorophyll content, nitrogen level and photosynthesis of leaves of two maize genotypes. Photosynth Res, 1983, 4: 35–47
[29]Muh J, Franke J, Borken W. Drying–rewetting events reduce C and N losses from a Norway spruce forest floor. Soil Biol Biochem, 2010, 42: 1303–1312
[30]Horner J D. Nonlinear effects of water deficits on foliar tannin concentration. Biochem Syst Ecol, 1990, 18: 211–213
[31]Nicolas M, Simpson R J, Lambers H, Dalling M J. Effects of drought on partitioning of nitrogen in two wheat varieties differing in drought-tolerance. Ann. Bot, 1985, 55: 743–754
[32]Liu R X, Zhou Z G, Guo W Q, Chen B L, Oosterhuis D M. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants. Agric Water Manag, 2008, 95: 1261–1270
[1] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[2] 郑慧敏,温晓蕾,郝晨阳,张培培,GEBREWAHID Takele Weldu,闫晓翠,刘大群,张学勇,李在峰. 70份国外小麦品种(系)的苗期和成株期抗叶锈病鉴定[J]. 作物学报, 2019, 45(10): 1455-1467.
[3] 李玉玲,蒋正宁,胡文静,李东升,程婧晔,裔新,程晓明,吴荣林,程顺和. CIMMYT小麦种质C615抗叶锈病QTL分析[J]. 作物学报, 2018, 44(6): 836-843.
[4] 刘金栋,杨恩年,肖永贵,陈新民,伍玲,白斌,李在峰,Garry M. ROSEWARNE,夏先春,何中虎. 兼抗型成株抗性小麦品系的培育、鉴定与分子检测[J]. 作物学报, 2015, 41(10): 1472-1480.
[5] 秦金燕,李在峰,闫晓翠,苏集华,姚占军,刘大群. 小麦抗病品系5R625抗叶锈病基因的分子鉴定[J]. 作物学报, 2015, 41(04): 651-657.
[6] 杨静静, 李亚宁, 李星, 刘大群. 小麦与叶锈菌互作体系中G蛋白α、β亚基的表达及其与抗病蛋白和活性氧代谢的关系[J]. 作物学报, 2010, 36(12): 2028-2034.
[7] 丁艳红,刘欢,师丽红,温晓蕾,张娜,杨文香,刘大群. 28个小麦微核心种质抗叶锈性分析[J]. 作物学报, 2010, 36(07): 1126-1134.
[8] 张娜;陈玉婷;李亚宁;张立荣;孟庆芳;张汀;杨文香;刘大群. 小麦抗叶锈病基因Lr24的一个新STS标记[J]. 作物学报, 2008, 34(02): 212-216.
[9] 张娜;杨文香;李亚宁;张汀;刘大群. 小麦抗叶锈病基因Lr45的SSR分子标记[J]. 作物学报, 2007, 33(04): 657-662.
[10] 杨作民;唐伯让;沈克全;夏先春. 小麦抗病育种的战略问题——小麦对锈病、白粉病第二线抗源的建立和应用[J]. 作物学报, 1994, 20(04): 385-394.
[11] 许树军;董玉琛;陈尚安;周荣华;李秀全;李立会. 小麦与山羊草双二倍体抗病性的研究与利用[J]. 作物学报, 1990, 16(02): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!