欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2028-2034.doi: 10.3724/SP.J.1006.2010.02028

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦与叶锈菌互作体系中G蛋白α、β亚基的表达及其与抗病蛋白和活性氧代谢的关系

杨静静,李亚宁*,李星,刘大群*   

  1. 河北农业大学植物保护学院 / 河北省植物病虫害生物防治工程技术研究中心 / 国家北方山区农业工程技术研究中心,河北保定071001
  • 收稿日期:2010-05-30 修回日期:2010-08-03 出版日期:2010-12-12 网络出版日期:2010-10-09
  • 通讯作者: 李亚宁,E-mail:yaning22@yahoo.com.cn;刘大群,E-mail:ldq@hebau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30971772)和河北省教育厅基金项目(2009130)资助。

Involvement of Heterotrimeric G Protein α and β Subunits in Defense Responses of Wheat to Puccinia triticina

YANG Jing-Jing,LI Ya-Ning*,LI Xing,LIU Da-Qun*   

  1. College of Plant Protection, Agricultural University of Hebei / Biological Control Center of Plant Diseases and Plant Pests of Hebei Province/ National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, China
  • Received:2010-05-30 Revised:2010-08-03 Published:2010-12-12 Published online:2010-10-09
  • Contact: LI Ya-Ning,E-mail:yaning22@yahoo.com.cn;LIU Da-Qun,E-mail:ldq@hebau.edu.cn

摘要: 为了从基因表达水平和抗病生理水平上了解小麦与叶锈菌互作过程中G蛋白的α、β亚基的作用,进一步揭示小麦的抗叶锈病分子机制和信号转导途径,以小麦抗叶锈病近等基因系TcLr1和叶锈菌05-22-64/05-8-63①为材料,构建了小麦与叶锈菌互作的亲和与非亲和组合,利用实时定量PCR技术对小麦G蛋白α、β亚基的基因表达量进行了检测。另外,以清水为对照,检测亲和与非亲和互作组合中,以及G蛋白抑制剂百日咳毒素PTX处理后再接种无毒性菌株的处理中,几丁质酶、β-1,3-葡聚糖酶以及活性氧产生速率的变化。结果发现,G蛋白的α亚基和β亚基都参与了小麦抗叶锈病的反应,并且可能在信号传递过程中起重要作用。无毒性叶锈菌可诱导G蛋白基因表达量的升高,而毒性叶锈菌会抑制G蛋白基因的表达。G蛋白α、β亚基在抗病反应信号传递过程中先后次序不同,β亚基基因的表达先于α亚基基因且表达量高于α亚基基因。另外,G蛋白可能通过诱导防卫酶和活性氧产生的增加来提高小麦对叶锈病的抗性。

关键词: 小麦叶锈病, 异三聚体G蛋白α亚基和β亚基, 实时定量PCR, 几丁质酶, 葡聚糖酶, 活性氧离子

Abstract: Heterotrimeric GTP-binding protein (G protein), a kind of protein in living cells, plays an important role in signal transduction on plasma membrane. G protein is actively involved in many physiological processes in plant, such as seed germination, stem elongation, root growth, fruit development, and regulation of defense reaction system. To clarify the functions of G protein on wheat leaf rust resistance, we detected the roles of Gα and Gβ subunits at a gene expression level in the interaction between wheat (Triticum aestvum L.) and Puccinia triticina. The results may help to disclose the molecular mechanism of wheat leaf rust resistance and signal transduction. Typical compatible and incompatible interactions were constructed, from wheat leaf rust resistance near-isogenic lines TcLr1 and P. triticina 05-22-64/05-8-63①. Expression of gene encoding Gα or Gβ subunit was detected in these interactions by real-time fluorescence quantitative PCR. Using water as control, the activities of chitinase, β-1,3-glucanase, and the rate changes of reactive oxygen ions production were determined in the compatible and incompatible interactions of wheat and P. triticina, respectively. In contrast with inoculated by virulent or avirulent strain independently, wheat leaves were smeared in a thin layer by G protein inhibitor pertussis toxin and inoculated with avirulent strain after 24 h. The [1]expressions of gene for Gα and Gβ subunits were up-regulated when inoculated with the avirulent strain but down-regulated by the inoculation of the virulent strain. Different subunits of G protein showed different priorities in the process of disease resistance signal transduction. The β subunit gene expressed earlier and in a higher level than the α subunit gene. In addition, G protein increased the resistance to P. triticina through stimulating the defense enzyme activities and reactive oxygen ions. These results indicate that both Gα and Gβ subunits may be involved in the process of disease resistant signal transduction.

Key words: Wheat leaf rust, Heterotrimeric G protein &alpha, and &beta, subunits, Real-time quantitative PCR, Chitinase, Glucanase, Reactive oxygen ions

[1]Gilman A G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem, 1987, 56: 615-649
[2]Ma H, Yanofsky M F, Meyerowitz E M. Molecular cloning and characterization of GPA1, a G protein αlpha subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci USA, 1990, 87: 3821-3825
[3]Ma H, Yanofsky M F, Huang H. Isolation and sequence analysis of TGA1 cDNAs encoding a tomato G protein α subunit. Gene, 1991, 107: 189-195
[4]Kim W Y, Cheong N E, Lee D C, Je D Y, Bahk J D, Cho M J, Lee S Y. Cloning and sequencing analysis of a full-length cDNA encoding a G protein α subunit, SGA1, from soybean. Plant Physiol, 1995, 108: 1315-1316
[5]Gotor C, Lam E, Cejudo F R, Romero L C. Isolation and analysis of the soybean SGA2 gene (cDNA) encoding a new member of the plant G-protein family of signal transducers. Plant Mol Biol, 1996, 32: 1227-1234
[6]Poulsen C, Mai X M, Borg S A. Lotus japonicus cDNA encoding an α subunit of a heterotrimeric G protein. Plant Physiol, 1994, 105: 1453-1454
[7]Seo H S, Kim H Y, Jeong J Y, Lee S Y, Bahk J D. Molecular cloning and characterization of RGA1 encoding a G protein α subunit from rice (Oryza sativa L. IR36). Plant Mol Biol, 1995, 27: 1119-1131
[8]Seo H, Choi C H, Lee S Y, Cho M J, Bahk J D. Biochemical characteristics of a rice (Oryza sativa L. IR36) G-protein α-subunit expressed in Escherichia coli. Biochem J, 1997, 324: 273-281
[9]Kang S G, Lee H J, Park E H, Suh S G. Molecular cloning characterization of cDNAs encoding heterotrimeric G protein α and β subunits from potato (Solanum tuberosum L.). Mol Cells, 2002, 13: 99-106
[10]Saalbach G, Natura B, Lein W, Buschmann P, Dahse I, Rohrbeck M, Nagy F. The α-subunit of a heterotrimeric G protein from tobacco, NtGPα1, functions in K+ channel regulation in mesophyll cells. J Exp Bot, 1999, 50: 53-61
[11]Ando S, Takumi S, Ueda Y, Ueda T, Mori N, Nakamura C. Nicotiana tabacum cDNAs encoding α and β subunits of a heterotrimeric GTP-binding protein isolated from hairy root tissues. Genes & Genet Syst, 2000, 75: 211-221
[12]Marsh J F, Kaufman L S. Cloning and characterization of PGA1 and PGA2: two G protein α-subunits from pea that promote growth in the yeast Saccharomyces cerevisiae. Plant J, 1999, 19: 237-247
[13]Kusnetsov V V, Oelmueller R. Isolation of cDNAs encoding the subunit α of heterotrimeric G proteins from Lupinus luteus (accession No. X99485). Plant Physiol, 1996, 112: 1399
[14]Pei Z M, Ghassemian M, Kwak C M, McCourt P, Schroeder J I. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science, 2000, 282: 287-290
[15]Hossain M S, Koba T, Harada K. Cloning and characterization of two full-length cDNAs, TaGA1 and TaGA2, encoding G-protein alpha subunits expressed differentially in wheat genome. Genes & Genet Syst, 2003, 78: 127-138
[16]Weiss C A, Garnaat C W, Mukai K, Hu Y, Ma H. Isolation of cDNAs encoding guanine nucleotide-binding protein beta-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc Natl Acad Sci USA, 1994, 91: 9554-9558
[17]Ishikawa A, Isasaki Y, Asahi T. Molecular cloning and characterization of a cDNA for the beta subunit of a G protein from rice. Plant Cell Physiol, 1996, 37: 223-228
[18]Jones H D, Smith S J, Desikan R, Plakidou-Dymock S, Lovegrove A, Hooley R. Hetetotrimeric G proteins are implicated in gibberellin induction of α -amylase gene expression in wild oat aleurone. Plant Cell, 1998, 10: 245-254
[19]Kusnetsov V V, Oelmueller R. Isolation and characterization of cDNAs encoding the subunit β of heterotrimeric G proteins from N. tabacum (accession No. X98161). Plant Physiol, 1996, 111: 948
[20]Hossain M S, Koba T, Harada K. Cloning and characterization of a cDNA (TaGB1) encoding β subunit of heterotrimeric G-protein from common wheat cv. S615. Plant Biotechnol, 2003, 20: 153-158
[21]Mason M G,Botella J R.Completing the heterotrimer:Isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA. Proc Natl Acad Sci USA, 2000, 97: 14784-14788
[22]Mason M G, Botella J R. Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gβ. Biochim Biophy Acta, 2001, 1520: 147-153
[23]Kato C, Mizutani T, Tamaki H, Kumagai H, Kamiya T, Hirobe A, Fujisawa Y, Kato H, Iwasaki Y. Characterization of heterotrimeric G protein complexes in rice plasma membrane. Plant J, 2004, 38: 320-331
[24]Zeng Z-L(曾志林), Dong H-T(董海涛), Li D-B(李德葆). Functions and related mechanisms of heterotrimeric G protein in plant. Acta Agric Zhejiangensis (浙江农业学报), 2007, 19(3): 248-252 (in Chinese with English abstract)
[25]Song S-S(宋水山), Yang W-X(杨文香), Ling Y-N(李亚宁), Liu D-Q(刘大群). Plant G protein and plant defense response. China Biotechnol (中国生物工程杂志), 2006, 26(3): 73-77(in Chinese with English abstract)
[26]Beffa R, Szell M, Meuwly P, Pay A, Vögeli-Lange R, Métraux J P, Neuhaus G, Meins F Jr, Nagy F. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J, 1995, 14: 5753-5761
[27]Ortega X, Velásquez J C, Pérez L M. IP3 production in the hypersensitive response of lemon seeding against Alternaria alternata involves active protein tyrosine kinases but not a G protein. Biol Res, 2005, 38: 89-99
[28]Ortega X, Planco R, Castaneda P, Perez L M. Signal transduction in lemon seedling in the hypersensitive response against Alternaria alternata: participation calmodulin G-protein and protein kinases. Biol Res, 2002, 35: 373-383
[29]Komer J A. Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol, 1996, 34: 435-455
[30]Yang J-J(杨静静), Li X(李星), Li Y-N(李亚宁), Liu D-Q(刘大群). Involvement of small GTP-binding protein gene Rab2 in resistance response of wheat to its leaf rust disease. Acta Agric Boreali-Sin (华北农学报), 2010, 25(6)(in press)
[31]Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, 3rd Edn. New York: Cold Spring Harbor Laboratory Press, 2001. pp 304-331
[32]Yue C-F(岳彩凤), Kang G-Z(康国章), Liu C(刘超), Guo T-C(郭天财), Zhu Y-J(朱云集), Shen B-Q(沈丙权). Cloning and sequencing of GAPDH gene in common wheat (Tritucum aestivum L.). Chin Agric Sci Bull (中国农学通报), 2008, 24(4): 94-98 (in Chinese with English abstract)
[33]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408
[34]Zhang Z-Q(张占全), Song S-S(宋水山), Zhang Y-C(张英春), Yang W-X(杨文香), Liu D-Q(刘大群). Involvement of the heterotrimeric G protein in the defense responses of wheat to Puccinia triticina. Sci Agric Sin (中国农业科学), 2009, 42(1): 117-123 (in Chinese with English abstract)
[35]Zhou Z-F(周祖富), Li Z-A(黎兆安). Laboratory Guide for Plant Physiology (植物生理学实验指导). Nanning: Guangxi University Press, 2005. pp 99-101 (in Chinese)
[36]Shi Y-M(史益敏), Tang Z-C(汤章城), Wang G-Q(王国强). Laboratory Guide for Modern Plant Physiology (现代植物生理学实验指南). Beijing: Science Press, 1999. pp 128-129 (in Chinese)
[37]Boller T, Gehri A, Mauch F, Vögeli U. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 1983, 157: 22-31
[38]Michel L, Serge K, Pierrette G, Bernard F. Biological function of pathogenesis related proteins: four tobacco pathogenesis related proteins are chitinases. Proc Natl Acad Sci USA, 1987, 84: 6750-6754
[39]Serge K, Michel L, Pierrette G, Bernard F. Biological function of pathogenesis related proteins: four PR proteins of tobacco have β-1,3-glucanase activity. EMBO J, 1987, 6: 3209-3212
[40]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
[41]Meng L(孟亮), Cui D-C(崔德才). Plant chitinases and its application in resistance to fungal disease. Lett Biotechnol (生物技术通讯), 2004, 15(4): 420-422 (in Chinese with English abstract)
[1] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[2] 翟玉山,邓宇晴,董萌,徐倩,程光远,彭磊,林彦铨*,徐景升*. 甘蔗捕光叶绿素a/b 结合蛋白基因ScLhca3 的克隆及表达[J]. 作物学报, 2016, 42(09): 1332-1341.
[3] 强治全,梁雅珺,于正阳,杜娅,张帅,朱维宁,张林生. 小麦wzy2-1基因的克隆及功能分析[J]. 作物学报, 2016, 42(08): 1253-1258.
[4] 黄珑,苏炜华,张玉叶,黄宁,凌辉,肖新换,阙友雄,陈如凯. 甘蔗CIPK基因的同源克隆与表达[J]. 作物学报, 2015, 41(03): 499-506.
[5] 王震,范晓静,张淼,张芳凝,李桂东,马翎健*. ATP合成相关基因在小麦BNS不育系育性转换中的差异表达[J]. 作物学报, 2014, 40(08): 1501-1505.
[6] 范伟,李雪姣,关明俐,缪刘杨,史佳楠,窦世娟,刘丽娟,李莉云,刘国振. 水稻几丁质酶基因的转录与表达特征[J]. 作物学报, 2014, 40(04): 571-580.
[7] 郝俊杰,胡雨薇,郭晓琴,赵付安,贾新合,郭利娟,张志新,王庆东. 用相互嫁接和定量PCR分析棉花对棉花黄萎病的抗性[J]. 作物学报, 2013, 39(07): 1179-1186.
[8] 董佳, 蔡彩平, 王立科, 赵亮, 张天真, 郭旺珍. 两个棉花ß-葡聚糖酶新基因的结构与表达特征分析[J]. 作物学报, 2011, 37(01): 40-47.
[9] 马雄风,喻春明,唐守伟,朱爱国,王延周,朱四元,刘建新,熊和平. 苎麻Actinl基因克隆及其在韧皮部纤维不同发育阶段的表达[J]. 作物学报, 2010, 36(1): 101-108.
[10] 王俊美,刘红彦,徐红明,王飞,高素霞,康振生. 应用基因芯片分析红蚰麦白粉菌胁迫条件下的基因表达谱[J]. 作物学报, 2009, 35(7): 1188-1193.
[11] 琚铭, 王海棠, 王立科, 李飞飞, 吴慎杰, 朱华玉, 张天真, 郭旺珍. 棉纤维发育相关基因时空表达与纤维品质的关联分析[J]. 作物学报, 2009, 35(7): 1217-1228.
[12] Ramesh N PUDAKE**,辛明明**,尹玉静**,解超杰,倪中福,孙其信*. 白粉菌(Erysiphe graminis)侵染诱导表达的小麦糖苷水解酶基因TaGlc2的克隆与鉴定[J]. 作物学报, 2009, 35(5): 786-794.
[13] 于振,李倩,赵建叶,江帆,王振英,彭永康,解超杰,刘志勇,孙其信,杨作民. 栽培小麦Brock和京411感染白粉菌后蛋白质组的变化[J]. 作物学报, 2009, 35(11): 2064-2072.
[14] 韦克苏;张其芳;程方民;钟连进;陈能;谢黎红. 花后高温下水稻可溶性淀粉合酶同工型基因的表达模式[J]. 作物学报, 2009, 35(1): 18-24.
[15] 刘建新;喻春明;唐守伟;朱爱国;王延周;朱四元;马雄风;熊和平. 苎麻果胶合成重要酶UGlcAE基因的克隆及组织表达[J]. 作物学报, 2008, 34(11): 1938-1945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!