欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1217-1228.doi: 10.3724/SP.J.1006.2009.01217

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉纤维发育相关基因时空表达与纤维品质的关联分析

琚铭,王海棠,王立科,李飞飞,吴慎杰,朱华玉,张天真,郭旺珍*   

  1. 南京农业大学作为遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2008-10-10 修回日期:2009-03-20 出版日期:2009-07-12 网络出版日期:2009-05-19
  • 通讯作者: 郭旺珍,E-mail:moelab@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30730067),国家高技术研究发展计划(863计划)项目(2006AA10Z111),教育部111项目(B08025)资助。

Associated Analysis between Temporal and Spatial Expression of Fiber Development Genes and Fiber Quality

JU Ming, WANG Hai-Tang, WANG Li-Ke, LI Fei-Fei, WU Shen-Jie, ZHU Hua-Yu, ZHANG T   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095,China
  • Received:2008-10-10 Revised:2009-03-20 Published:2009-07-12 Published online:2009-05-19
  • Contact: GUO Wang-Zhen, E-mail: moelab@njau.edu.cn

摘要:

14个纤维品质差异的棉花品种(或品系)为材料,研究10个纤维发育相关基因时空表达变化与纤维品质的关系,为阐明棉纤维发育相关基因与纤维品质形成关系提供理论基础。利用实时荧光定量PCR技术检测10个基因在14个供试品种(或品系)不同纤维发育时期的相对表达量,结果表明,虽然遗传背景完全不同,但它们具有某些共同表达特征。GhExp1GhCIPK1GhSus1GhSusA1GhPL5个基因都是在纤维伸长期优势表达;GhACT1GhRacAGhRacB是在纤维伸长前期和次生壁加厚期高表达;GhCelA1GhcelA3是在纤维伸长后期和次生壁加厚期优势表达。这些基因表达谱与纤维品质关联分析显示,GhRacA23DPA高表达且表达量与纤维品质显著正相关,其余基因在低表达时其表达量与纤维品质呈显著性相关,而在高表达时其表达量与纤维品质无相关性。GhExp120DPA的表达量与纤维比强度和整齐度呈显著负相关,与伸长率呈极显著正相关;GhPL23DPA的表达量与纤维长度呈显著负相关;GhRacA5DPA23DPA的表达量均与伸长率呈极显著正相关;GhRacB10DPA的表达量与长度和整齐度呈显著负相关;GhCelA1基因在5DPA的表达量与纤维长度呈显著正相关,与马克隆值呈显著负相关,在10DPA的表达量与马克隆值呈显著正相关,与伸长率达到极显著正相关,与比强度呈显著负相关,与长度和整齐度呈极显著负相关;GhCIPK1GhACT1GhSus1GhSusA1GhCelA3 5个基因在纤维发育各时期的表达量与纤维品质各指标未检测到相关性。

关键词: 棉花, 纤维品质, 棉纤维发育相关基因, 荧光实时定量PCR

Abstract:

Ten genes expressed preferentially in fiber development period reported previously and 14 cotton cultivars (strains) with distinctly different fiber quality were selected in this paper. To test the relative expression values of the genes in six different fiber developmental stages, 0 day post anthesis (DPA), 5 DPA, 10 DPA, 15 DPA, 20 DPA, 23 DPA, by real-time quantitative RT-PCR (qRT-PCR), and the data of fiber qualities from 14 cotton varieties (strains). The expression profile showed that GhExp1, GhCIPK1,GhSus1, GhSusA1 and GhPL genes were expressed preferentially during fiber elongation; GhACT1GhRacA and GhRacB genes all had high expression level in earlier stage of fiber elongation and the thickening period of secondary cell wall. Two cellulose synthase genes (GhCelA1 and GhCelA3) were expressed predominantly during late stage of fiber elongation and the thickening period of secondary cell wall. For most genes, the expression value in low expression level period had significant correlation with fiber quality, while no significant correlation was detected in preferential expression stage of these genes with an exception of GhRacA gene. The expression level of GhExp1 in 20DPA fiber of 14 cotton varieties (strains) had a significant negative correlation with fiber strength and uniformity and a significant positive correlation with fiber elongation percentage; the expression level of GhPL gene in 23DPA had a significant negative correlation with fiber length; the expression level of GhRacA gene in 5DPA and 23DPA both had a high significant positive correlation with fiber elongation percentage; the expression level of GhRacB gene in 10DPA had a significant negative correlation with fiber length and uniformity; the expression level of GhCelA1 gene in 5DPA had a significant positive correlation with fiber length and a significant negative correlation with micronaire value; the expression level of GhCelA1 gene in 10DPA had a significant negative correlation with fiber length, a significant positive correlation with micronaire value, and a high significant correlation with fiber elongation percentage; the correlation between the expression levels of GhCIPK1, GhACT1, GhSus1, GhSusA1and GhCelA3 gene and fiber quality indexes had not been detected.

Key words: Cotton, Fiber quality, Genes related with fiber development, Real-time quantitative RT-PCR

[1] Zhang H(张辉), Tang W-K(汤文开), Tan X(谭新), Gong L-L(龚路路), Li X-B(李学宝). Progresses in the study of gene regulation of cotton fiber development. Chin Bull Bot (植物学通报), 2007, 24(2): 127-133(in Chinese with English abstract)

[2] Harmer S E, Orford S J, Timmis J N. Characterisation of six α-expansin genes in Gossypium hirsutum (upland cotton). Mol Genet Genomics, 2002, 268: 1-9

[3] Gao P, Zhao P M, Wang J, Wang H Y, Wu X M, Xia G X. Identification of genes preferentially expressed in cotton fibers: A possible role of calcium signaling in cotton fiber elongation. Plant Sci, 2007, 173: 61-69

[4] Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17: 859-875

[5] Guo Y(郭媖). Cloning and characterization of five genes related with fiber development in Gossypium hirsutum L. MS Dissertation ofNanjing Agricultural University, 2006(in Chinese with English abstract)

[6] Li X-B(李先碧), Xiao Y-H(肖岳华), Luo M(罗明), Hou L(侯磊), Li D-M( 李德谋), Luo X-Y(罗小英), Pei Y(裴炎). Cloning and expression analysis of two rac genes from cotton (Gossypium hirsutum L.). Acta Genet Sin(遗传学报), 2005, 32(1): 72-78 (in Chinese with English abstract)

[7] Ruan Y L, Prem S C. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol, 1998, 118: 399-406

[8] Pear J R, Kawagoe Y, Schreckengost W E, Delmer D P, Stalker D M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA, 1996, 93: 12637-12642

[9] Laosinchai W, Cui X, Brown R M Jr. A full cDNA of cotton cellulose synthase has high homology with the Arabidopsis RSW1 gene and cotton CelA1 (accession No. AF 200453) (PGR 00-002). Plant Physiol, 2000, 122: 291

[10]Yu S-W(余舜武), Liu H-Y(刘鸿艳), Luo L-J(罗立军). Analysis of relative gene expression using different real-time quantitative PCR. Acta Agron Sin (作物学报), 2007, 33(7): 1214-1218 (in Chinese with English abstract)

[11] Hughesd D W, Galau G. Preparation of RNA from cotton leaves and pollen. Plant Mol Biol Rep, 1988, 6: 253-257

[12] Wan C Y, Wilkins T A. Isolation of multiple cDNA encoding the vacuolar H+-ATPase subunit B from developing cotton (Gossypium hirsutum L.). Plant Physiol, 1994, 106: 393-394

[13] Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res, 2001, 29: e45

[14] Xu C-N(徐楚年), Yu B-S(余炳生), Zhang Y(张仪), Jia J-Z(贾君镇), Shou Y(寿元). Comparative study of four cultivated cotton species. Beijing Agric Univ J (北京农业大学学报), 1988, 14(2): 113-119(in Chinese with English abstract)

[15] Tang Q-F(汤庆峰), Wen Q-K(文启凯), Tian C-Y(田长彦), Zhang J-S(张巨松), Ma L-C(马黎春). A study process on formation mechanism of cotton fiber quality and its affecting factors. Xinjiang Agric Sci (新疆农业科学), 2003, 40(4): 206-210 (in Chinese with English abstract)

[16] Gou J Y, Wang L J, Chen S P, Hu W L, Chen X Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res, 2007, 17: 422-434

[17] Jones M A, Shen J J, Fu Y, Li H, Yang Z B, Grierson C S. The Arabidopsis Rop GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell, 2002, 14: 763-776

[18] Saxena I M, Brown R M. Cellulose synthase and related enzymes. Curr Opin Plant Biol, 2000, 3: 523-531

[19] Holland N, Holland D, Helentjaris T, Dhugga K S, Xoconostle-Cazares B, Delmer D P. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol, 2000, 123: 1313-1324

[20] Delmer D P. Cellulose biosynthesis: Exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 245-276
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!