欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 971-979.doi: 10.3724/SP.J.1006.2012.00971

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析

王臻昱1,2,3,才华1,柏锡1,纪巍1,李勇1,魏正巍1,朱延明1,*   

  1. 1东北农业大学植物生物工程研究室,黑龙江哈尔滨150030;2 中国科学院东北地理与农业生态研究所,长春1300112; 3 中国科学院研究生院,北京100049
  • 收稿日期:2011-11-17 修回日期:2012-02-22 出版日期:2012-06-12 网络出版日期:2012-04-06
  • 通讯作者: 朱延明, E-mail: ymzhu2001@neau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31171578), 黑龙江省高校科技创新团队建设计划(2011TD005), 国家高技术研究发展计划(863计划)项目(2008AA10Z153)和黑龙江省科技厅重大攻关项目(GA06B103)资助。

Isolation of GsGST19 from Glycine soja and Analysis of Saline-Alkaline Tolerance for Transgenic Medicago sativa

WANG Zhen-Yu1,2,3,CAI Hua1,BAI Xi1,JI Wei1,LI Yong1,WEI Zheng-Wei1,ZHU Yan-Ming1,*   

  1. 1 Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China; 2 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China; 3 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2011-11-17 Revised:2012-02-22 Published:2012-06-12 Published online:2012-04-06
  • Contact: 朱延明, E-mail: ymzhu2001@neau.edu.cn

摘要: 谷胱甘肽S-转移酶对植物抵御逆境胁迫和解除细胞毒素起着重要作用。本研究从野大豆盐碱胁迫基因表达谱中筛选并克隆得到GsGST19基因,将其转化苜蓿,获得超量表达的转基因苜蓿,并对转基因苜蓿进行耐盐碱性分析。结果显示在正常培养条件下,转基因苜蓿株系19-4和19-9的GST酶活性分别是非转基因株系的1.52倍和1.49倍。在100 mmol L–1 NaHCO3处理14 d后转基因株系生长状态良好,而非转基因对照株系明显萎蔫、失绿、甚至死亡;转基因株系的丙二醛含量和相对质膜透性显著低于非转基因株系(P<0.05),而叶绿素含量和根系活力显著高于非转基因对照(P<0.05),说明超量表达GsGST19基因增强了苜蓿的耐盐碱能力。

关键词: 谷胱甘肽S-转移酶(GST), 转基因苜蓿, 野大豆, 耐盐碱性

Abstract: Alfalfa (Medicago sativa L.) is one of the most important leguminous forage crops worldwide. Saline-alkaline stress significantly limits the productivity of alfalfa due to its adverse effects on growth, formation of nodules, and symbiotic nitrogen-fixation capacity, and resulting in the formation of reactive oxygen species (ROS). To protectplants from the toxicity ofreactiveoxygen, aerobic organisms are equipped with an array of defense mechanisms, including one based on glutathione S-transferases (GSTs). Glutathione S-transferases (GSTs) are ubiquitous enzymes that play a key role in stress tolerance and cellular detoxification. The GST gene GsGST19 isolated fromwild type soybean(Glycine soja) under saline-alkaline stress was transformed into alfalfa (Medicago sativa L.). Transgenic alfalfa plants showed 0.52–0.49 times higher levels of GST activity than wild type plants. Transgenic alfalfa grew well in the conditions of 100 mmol L–1 NaHCO3, while wild type plants exhibited discoloration and stunted growth, or even death. There were significantly changes in malondialdehyde content and relative membrane permeability caused by saline-alkaline stress in non-transgenic lines compared to transgenic lines (P<0.05). Moreover, compared with non-transgenic, transgenic alfalfa had higher levels of chlorophyll content and root activity under saline-alkali stress conditions. The results indicated that the gene GsGST19 could enhanceresistance to saline-alkaline in alfalfa.

Key words: Glutathione S-transferase, Transgenic alfalfa, Glycine soja, Saline-alkaline stress

[1]Geng H-Z(耿华珠). Alfalfa in China (中国苜蓿). Beijing: China Agriculture Press, 1995. pp 1–5 (in Chinese)

[2]Liu C-K(柳参奎). Primitive Color Illustrated Handbook of Plants of Salt-Alkali Soil in the Northeast of China (中国东北盐碱地植物原色图鉴). Herbin: Northeast Forest University Press in China, 2005. p 1 (in Chinese)

[3]Zhang H-N(张海娜), Li X-J(李小娟), Li C-D(李存东), Xiao K(肖凯). Effects of overexpression of wheat superoxide dismutase (SOD) genes on salt tolerant capability in tobacco. Acta Agron Sin (作物学报), 2008, 34(8): 1403–1408 (in Chinese with English abstract)

[4]Roxas V P, Smith R K, Jr., Allen1 E R, Allen1 R D. Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol, 1997, 15: 988–991

[5]George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol, 2010, 167: 311–318

[6]Huang C, Guo T, Zheng S C, Feng Q L, Liang J H, Li L. Increased cold tolerance in Arabidopsis thaliana transformed with Choristoneura fumiferana glutathione S-transferase gene. Biol Plant, 2009, 53: 183–187

[7]Zhao F Y, Zhang H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tiss Organ Cult, 2006, 86: 349–358

[8]Dixon D P, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 2010, 71: 338–350

[9]Ge Y, Li Y, Zhu Y M, Bai X, Lü D K, Guo D J, Ji W, Cai H. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol, 2010, 10: 153

[10]Ge Y, Li Y, Lv D K, Bai X, Ji W, Cai H, Wang A X, Zhu Y M. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Funct Integr Genom, 2011, 11: 369–379

[11]Bao A K, Wang S M, Wu G Q, Xi J J, Zhang J L, Wang C M. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci, 2009, 176: 232–240

[12]Rao M V, Paliyath G., Ormrod D P. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol, 1997, 115: 137–149

[13]Mauch F, Dudlar R. Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol, 1993, 102: 1193–1201

[14]Health R L, Packer L. Photoperoxidation in isolated chloroplast s1 I1 Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochem Biophys, 1981, 125:1892–1981

[15]Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem, 1997, 251: 153–157

[16]Lichtenthaler H K, Wellburn A R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc. Trans, 1983, 11: 591–592

[17]Zhong X H, Huang N R. Rice grain chalkiness is negatively correlated with root activity during grain filling. Rice Sci, 2005, 12: 192–196

[18]Dixon D P, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol, 2002, 3: 3004.1–3004.10

[19]Yang X, Su W, Liu J P, Liu Y J, Zeng Q Y. Biochemical and physiological characterization of a tau class glutathione transferase from rice (Oryza sativa). Plant Physiol Biochem, 2009, 47: 1061–1068

[20]Lo Piero A R, Puglisi I, Petrone G. Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]. J Agric Food Chem, 2006, 54: 9227–9233

[21]Bianchi M W, Roux C, Vartanian N. Drought regulation of GST8 encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant, 2002, 116: 96–105

[22]DeRidder B P, Dixon D P, Beussman D J, Edwards R, Goldsbrough P B. Induction of glutathione S-transferases in Arabidopsis by herbicide safety. Plant Physiol, 2002, 130: 1497–1505

[23]Ji W, Zhu Y M, Li Y, Yang L, Zhao X W, Cai H, Bai X. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett, 2010, 32: 1173–1179

[24]Dixit P, Mukherjee P K, Ramachandran V, Eapen S. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PloS ONE, 2011, 6(1): e16360. 1371/journal.pone.0016360

[25]Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002, 53: 1305–1319

[26]Diao G, Wang Y, Wang C, Yang C. Cloning and functional characterization of a novel glutathione S-transferase gene from Limonium bicolor. Plant Mol Biol Rep, 2011, 29: 77–87
[1] 赵阳,朱延明,柏锡,纪巍,吴婧,唐立郦,才华. GsCBRLK/SCMRP双价基因苜蓿耐碱性及氨基酸含量分析[J]. 作物学报, 2014, 40(03): 431-438.
[2] 张艳敏, 张红梅, 相金英, 郭秀林, 刘子会, 李国良, 陈受宜. BADH基因苜蓿T-DNA侧翼序列分析及转化事件特异性分析[J]. 作物学报, 2011, 37(03): 397-404.
[3] 於丙军;罗庆云; 刘友良. 盐胁迫对盐生野大豆生长和离子分布的影响[J]. 作物学报, 2001, 27(06): 776-780.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!