作物学报 ›› 2012, Vol. 38 ›› Issue (06): 980-987.doi: 10.3724/SP.J.1006.2012.00980
王光,吴智丹,张磊,刘凤权,邵敏*
WANG Guang,WU Zhi-Dan,ZHANG Lei,LIU Feng-Quan,SHAO Min*
摘要: qRT-PCR分析表明,日本晴OsQ16基因受稻瘟病菌诱导表达。利用PCR技术从日本晴基因组中克隆了该基因编码区5′端上游1 229 bp的启动子序列,命名为OsQ16p。用其取代pBI121中gus基因上游的CaMV35S启动子,构建重组表达载体pBIQ16p,经农杆菌介导转化日本晴,获得转基因植株。GUS组织化学染色和qRT-PCR分析表明: (1) gus基因在抗性愈伤组织和阳性转基因植株中均能表达; (2)转基因植株在接种稻瘟病菌后12 h,GUS表达量是处理前的2.7倍; (3)抗病相关信号分子水杨酸(salicylic acid,SA)和茉莉酸甲酯(methyl jasmonate,MeJA)喷施转基因植株叶面后12 h,GUS表达量分别为处理前的3.1倍和3.5倍。以上结果表明,OsQ16p启动子具有启动活性,并明显受稻瘟病菌、MeJA和SA诱导表达。
[1]Nie L-N(聂丽娜), Xia L-Q(夏兰琴), Xu Z-S(徐兆师). Progress on cloning and functional study of plant gene promoters. J Plant Genet Resour (植物遗传资源学报), 2008, 9(3): 385–391 (in Chinese with English abstract) [2]Yin Y, Chen L, Beachy R. Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice. Plant J, 1997, 12: 1179–1188[3]Nitz I, Berkefeld H, Puzio P S, Grundler F M. Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci, 2001, 161: 337–346 [4]Lu J(路静), Zhao H-Y(赵华燕), He Y-K(何奕昆), Song Y-R(宋艳茹). Advances in the study and application of higher plant promoter. Prog Nat Sci (自然科学进展), 2004, 14(8): 856–862 (in Chinese)[5]Sunilkumar G, Mohr L, Lopata-Finch E. Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol, 2002, 50: 463–474[6]Chatterjee M, Banerjee A K, Hannapel D J. A BELL1-like gene of potato is light activated and wound inducible. Plant Physiol, 2007, 145: 1435–1443[7]Cai Y-R(柴玉荣), Tian F(田芳), Liu H-T(刘红涛). Cloning and functional analysis of Dunaliella salina promoter rbcS. China Biotechnol (中国生物工程杂志), 2008, 28(4): 47–52 (in Chinese)[8]Zhu Q, Song B T, Zhang C, Liu J. Construction and functional characteristics of tuber-specific and cold-inducible chimeric promoters in potato. Plant Cell Rep, 2008, 27: 47–55[9]Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34: 137–148[10]Shen Q, Chen C N, Brands A, Pan S M, Ho T H. The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol, 2001, 45: 327–340[11]Li A, Chen L L, Ren H Y, Wang X C, Huang R F. Analysis of the essential DNA region for OsEBP-89 promoter in response to methyl jasmonic acid. Sci China (Ser C: Life Sci), 2008, 51(3): 280–285[12]Li N(李宁), Fan S-J(樊守金), Zhang Z-Y(张增艳). Progress in plant promoters related to disease resistance. J Plant Genet Resour (植物遗传资源学报), 2007, 8(2): 234–239 (in Chinese with English abstract)[13]Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar S P. Signaling in plant-microbe interactions. Science, 1997, 276: 726–728[14]Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002, 30: 325–327[15]Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 1989[16]Huang J Q, Wei Z M, An H L, Zhu Y X. Agrobacterium tumefaciens-mediated transformation of rice with the spider insecticidal gene conferring resistance to leaffolder and striped stem borer. Cell Res, 2001, 11: 149–155[17]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271–282[18]Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987, 6: 3901–3907[19]Zhang Z-H(张智慧), Nie Y-F(聂燕芳), He L(何磊), Li Y-F(李云锋), Wang Z-Z(王振中). Resistance-related defense enzymes and endogenous salicylic acid induced by exogenous methyl jasmonate in rice against blast disease. Acta Phytopathol Sin (植物病理学报), 2010, 40(4): 395–403 (in Chinese with English abstract)[20]Lee M W, Qi M, Yang Y N. A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol Plant Microbe Interact, 2001, 14: 527–535[21]Wu G-Q(吴功庆), Li Y-N(李亚男), Chen D-Q(陈大清). Anaerobic gene expression and regulation mechanism in plants. J Trop Subtrop Bot (热带亚热带植物学报), 2006, 14(1): 87–92 (in Chinese with English abstract)[22]Fukuda Y. Interaction of tobacoo nuclear protein with an elicitor-resistance element in the promoter of a basic class I chitinase gene. Plant Mol Biol, 1997, 34: 81–87[23]Balbi V, Devoto A. Jasmonate signaling network in Arbidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol, 2008, 177: 301–318[24]Sa Q, Wang Y, Li W, Zhang L, Sun Y. The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fungus-inducible expression patterns and responds to both salicylic acid and jasmonic acid. Plant Cell Rep, 2003, 22: 79–84[25]Moreno A B, Penas G, Rufat M, Bravo J M, Estopa M, Messeguer J, San Segundo B. Pathogen-induced production of the antifungal AFP protein from A spergillus giganteus confers resistance to the blast fungus Magnapor the grisea in transgenic rice. Mol Plant Microbe Interact, 2005, 18: 960–972[26]Choi J J, Klosterma S J, Hadwiger L A. A promoter from pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance. Phytopathology, 2004, 94: 651–660[27]Durrant W E, Dong X. Systematic acquired resistance. Annu Rev Phytopathol, 2004, 42: 185–209[28]Halim V A, Vess A, Scheel D, Rosahl S. The role of salicylic acid and jasmonic acid in pathogen defence. Plant Biol, 2006, 8: 307–313[29]Robert-Seilanizatz A, Nacarro L, Bari R, Jones J D G. Pathological hormone imbalances. Curr Opin Plant Biol, 2007, 10: 372–379[30]Wu G-Z(吴国昭), Xie L-J(谢丽君), Song Y-Y(宋圆圆), Chen M(陈敏), Zeng R-S(曾任森). The physiological and biochemical mechanisms of disease resistance of Oryza rufipogon Griff. indigenous to Gaozhou, Guangdong against Pyricularia gisea induced by exogenously applied plant signal compounds. Acta Agric Boreali-Occident Sin (西北农业学报), 2009, 18(3): 254–258 (in Chinese with English abstract)[31]Peng X-X(彭喜旭), Hu Y-J(胡耀军), Tang X-K(唐新科), Zhou P-L(周平兰), Deng X-B(邓小波), Wang H-H(王海华). Isolation and expression profiles of rice WRKY30 induced by jasmonic acid application and fungal pathogen infection. Sci Agric Sin (中国农业科学), 2011, 44(12): 2454–2461 (in Chinese with English abstract) |
[1] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[2] | 马硕, 焦悦, 杨江涛, 王旭静, 王志兴. 基因组测序技术解析耐除草剂转基因水稻G2-7的分子特征[J]. 作物学报, 2020, 46(11): 1703-1710. |
[3] | 常建忠,董春林,张正,乔麟轶,杨睿,蒋丹,张彦琴,杨丽莉,吴佳洁,景蕊莲. 小麦抗逆相关基因TaSAP1的5′非翻译区内含子功能分析[J]. 作物学报, 2019, 45(9): 1311-1318. |
[4] | 董玉凤 王旭静 宋亚亚 靳 茜 王志兴. 利用基因拆分技术培育耐草甘膦转基因水稻的研究 [J]. 作物学报, 2019, 45(3): 344-353. |
[5] | 杨瑞娟,白建荣,闫蕾,苏亮,王秀红,李锐,张丛卓. 玉米低磷胁迫诱导型强启动子P1502-ZmPHR1的克隆与表达分析[J]. 作物学报, 2018, 44(7): 1000-1009. |
[6] | 秦丽霞, 李静, 张换样, 李盛, 竹梦婕, 焦改丽, 吴慎杰. 棉花半乳糖基转移酶基因GhGalT1启动子的克隆及表达分析[J]. 作物学报, 2018, 44(02): 218-226. |
[7] | 余建,刘长英,赵爱春,王传宏,蔡雨翔,余茂德*. 桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析[J]. 作物学报, 2017, 43(06): 839-848. |
[8] | 王睿,朱梦琳,高方远,任鄄胜,陆贤军,任光俊,林拥军. 水稻组织特异型人工合成启动子的设计、构建及功能鉴定[J]. 作物学报, 2017, 43(06): 789-794. |
[9] | 石磊,苗利娟,齐飞艳,张忠信,高伟,孙子淇,黄冰艳,董文召,汤丰收,张新友*. 花生Δ9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析[J]. 作物学报, 2016, 42(11): 1629-1637. |
[10] | 扆珩,李昂,刘惠民,景蕊莲. 小麦蛋白磷酸酶2A 基因TaPP2AbB″-α 启动子的克隆及表达分析[J]. 作物学报, 2016, 42(09): 1282-1290. |
[11] | 马军韬,张国民,辛爱华,张丽艳,邓凌韦,王永力,王英,任洋,宫秀杰,葛选良,杨秀峰. 不同遗传背景下稻瘟病菌致病性对比分析[J]. 作物学报, 2015, 41(12): 1791-1801. |
[12] | 周露, 沈贝贝, 白苏阳, 刘喜, 江玲, 翟虎渠, 万建民. 以RNA干扰γ-氨基丁酸转氨酶1基因(OsGABA-T1)表达提高稻米γ-氨基丁酸(GABA)含量[J]. 作物学报, 2015, 41(09): 1305-1312. |
[13] | 杜皓,丁林云,何曼林,蔡彩平,郭旺珍*. 受多逆境诱导表达的GhWRKY64基因启动子克隆与功能分析[J]. 作物学报, 2015, 41(04): 593-600. |
[14] | 王红梅,张昌泉,李钱峰,辛世文,刘巧泉,徐明良. 以谷蛋白GluA-2 信号肽增强外源蛋白在转基因水稻胚乳中的表达与积累[J]. 作物学报, 2015, 41(04): 524-530. |
[15] | 李祥晓,王倩,罗生香,何云霞,朱苓华,周永力,黎志康. 黑龙江省稻瘟病菌无毒基因分析及抗病种质资源筛选[J]. 作物学报, 2012, 38(12): 2192-2197. |
|