作物学报 ›› 2012, Vol. 38 ›› Issue (06): 971-979.doi: 10.3724/SP.J.1006.2012.00971
王臻昱1,2,3,才华1,柏锡1,纪巍1,李勇1,魏正巍1,朱延明1,*
WANG Zhen-Yu1,2,3,CAI Hua1,BAI Xi1,JI Wei1,LI Yong1,WEI Zheng-Wei1,ZHU Yan-Ming1,*
摘要: 谷胱甘肽S-转移酶对植物抵御逆境胁迫和解除细胞毒素起着重要作用。本研究从野大豆盐碱胁迫基因表达谱中筛选并克隆得到GsGST19基因,将其转化苜蓿,获得超量表达的转基因苜蓿,并对转基因苜蓿进行耐盐碱性分析。结果显示在正常培养条件下,转基因苜蓿株系19-4和19-9的GST酶活性分别是非转基因株系的1.52倍和1.49倍。在100 mmol L–1 NaHCO3处理14 d后转基因株系生长状态良好,而非转基因对照株系明显萎蔫、失绿、甚至死亡;转基因株系的丙二醛含量和相对质膜透性显著低于非转基因株系(P<0.05),而叶绿素含量和根系活力显著高于非转基因对照(P<0.05),说明超量表达GsGST19基因增强了苜蓿的耐盐碱能力。
[1]Geng H-Z(耿华珠). Alfalfa in China (中国苜蓿). Beijing: China Agriculture Press, 1995. pp 1–5 (in Chinese)[2]Liu C-K(柳参奎). Primitive Color Illustrated Handbook of Plants of Salt-Alkali Soil in the Northeast of China (中国东北盐碱地植物原色图鉴). Herbin: Northeast Forest University Press in China, 2005. p 1 (in Chinese)[3]Zhang H-N(张海娜), Li X-J(李小娟), Li C-D(李存东), Xiao K(肖凯). Effects of overexpression of wheat superoxide dismutase (SOD) genes on salt tolerant capability in tobacco. Acta Agron Sin (作物学报), 2008, 34(8): 1403–1408 (in Chinese with English abstract)[4]Roxas V P, Smith R K, Jr., Allen1 E R, Allen1 R D. Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol, 1997, 15: 988–991[5]George S, Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol, 2010, 167: 311–318 [6]Huang C, Guo T, Zheng S C, Feng Q L, Liang J H, Li L. Increased cold tolerance in Arabidopsis thaliana transformed with Choristoneura fumiferana glutathione S-transferase gene. Biol Plant, 2009, 53: 183–187[7]Zhao F Y, Zhang H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tiss Organ Cult, 2006, 86: 349–358[8]Dixon D P, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 2010, 71: 338–350[9]Ge Y, Li Y, Zhu Y M, Bai X, Lü D K, Guo D J, Ji W, Cai H. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol, 2010, 10: 153[10]Ge Y, Li Y, Lv D K, Bai X, Ji W, Cai H, Wang A X, Zhu Y M. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Funct Integr Genom, 2011, 11: 369–379[11]Bao A K, Wang S M, Wu G Q, Xi J J, Zhang J L, Wang C M. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci, 2009, 176: 232–240[12]Rao M V, Paliyath G., Ormrod D P. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol, 1997, 115: 137–149[13]Mauch F, Dudlar R. Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol, 1993, 102: 1193–1201[14]Health R L, Packer L. Photoperoxidation in isolated chloroplast s1 I1 Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochem Biophys, 1981, 125:1892–1981[15]Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem, 1997, 251: 153–157[16]Lichtenthaler H K, Wellburn A R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc. Trans, 1983, 11: 591–592[17]Zhong X H, Huang N R. Rice grain chalkiness is negatively correlated with root activity during grain filling. Rice Sci, 2005, 12: 192–196[18]Dixon D P, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol, 2002, 3: 3004.1–3004.10[19]Yang X, Su W, Liu J P, Liu Y J, Zeng Q Y. Biochemical and physiological characterization of a tau class glutathione transferase from rice (Oryza sativa). Plant Physiol Biochem, 2009, 47: 1061–1068[20]Lo Piero A R, Puglisi I, Petrone G. Gene isolation, analysis of expression, and in vitro synthesis of glutathione S-transferase from orange fruit [Citrus sinensis L. (Osbeck)]. J Agric Food Chem, 2006, 54: 9227–9233[21]Bianchi M W, Roux C, Vartanian N. Drought regulation of GST8 encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase. Physiol Plant, 2002, 116: 96–105[22]DeRidder B P, Dixon D P, Beussman D J, Edwards R, Goldsbrough P B. Induction of glutathione S-transferases in Arabidopsis by herbicide safety. Plant Physiol, 2002, 130: 1497–1505[23]Ji W, Zhu Y M, Li Y, Yang L, Zhao X W, Cai H, Bai X. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett, 2010, 32: 1173–1179[24]Dixit P, Mukherjee P K, Ramachandran V, Eapen S. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PloS ONE, 2011, 6(1): e16360. 1371/journal.pone.0016360[25]Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002, 53: 1305–1319[26]Diao G, Wang Y, Wang C, Yang C. Cloning and functional characterization of a novel glutathione S-transferase gene from Limonium bicolor. Plant Mol Biol Rep, 2011, 29: 77–87 |
[1] | 赵阳,朱延明,柏锡,纪巍,吴婧,唐立郦,才华. 转GsCBRLK/SCMRP双价基因苜蓿耐碱性及氨基酸含量分析[J]. 作物学报, 2014, 40(03): 431-438. |
[2] | 张艳敏, 张红梅, 相金英, 郭秀林, 刘子会, 李国良, 陈受宜. 转BADH基因苜蓿T-DNA侧翼序列分析及转化事件特异性分析[J]. 作物学报, 2011, 37(03): 397-404. |
[3] | 於丙军;罗庆云; 刘友良. 盐胁迫对盐生野大豆生长和离子分布的影响[J]. 作物学报, 2001, 27(06): 776-780. |
|